Module-level Variables

reinke_module

Variable nameTypeInitialDescription
vcritxrealNone

process_input

Variable nameTypeInitialDescription
nininteger10
maxleninteger2000
linecharacterNone
linelenintegerNone
linenointegerNone
iptrintegerNone
infileintegerNone
outfileintegerNone
report_changesintegerNone
icodeintegerNone
subscript_presentlogicalNone
errorlogicalNone
error_messagecharacterNone
show_changesintegerNone
constraints_existlogicalNone

neoclassics_constants

Variable nameTypeInitialDescription
no_rootsinteger30

neoclassics_module

Variable nameTypeInitialDescription
speciescharacter(/"e", "D", "T", "a"/)
densitiesrealNone
temperaturesrealNone
dr_densitiesrealNone
dr_temperaturesrealNone
rootsreal0
weightsreal0
nureal0
nu_starreal0
nu_star_averagedreal0
vdreal0
KTreal0
Erreal0.0
iotareal1.0d0
D11_monoreal0
D11_plateaureal0
nu_star_mono_inputrealNone
D11_star_mono_inputrealNone
D13_star_mono_inputrealNone
D111real0
D112real0
D113real0
q_fluxreal0
Gamma_fluxreal0
D31_monoreal0
eps_effreal1d-5
r_effreal0

pf_power_variables

Variable nameTypeInitialDescription
acptmaxrealNone

average of currents in PF circuits (kA)

ensxpfmrealNone

maximum stored energy in the PF circuits (MJ)

iscenrintegerNone

Switch for PF coil energy storage option:

  • =1 all power from MGF (motor-generator flywheel) units
  • =2 all pulsed power from line
  • =3 PF power from MGF, heating from line
pfcktsrealNone

number of PF coil circuits

spfbuslrealNone

total PF coil circuit bus length (m)

spsmvarealNone

sum of PF power supply ratings (MVA)

srcktpmrealNone

sum of resistive PF coil power (kW)

vpfskvrealNone

PF coil voltage (kV)

peakpoloidalpowerrealNone

Peak absolute rate of change of stored energy in poloidal field (MW)

maxpoloidalpowerrealNone

Maximum permitted absolute rate of change of stored energy in poloidal field (MW)

poloidalpowerrealNone

Poloidal power usage at time t (MW)

numerics

Variable nameTypeInitialDescription
ipnvarsinteger175

ipnvars FIX : total number of variables available for iteration

ipeqnsinteger91

ipeqns FIX : number of constraint equations available

ipnfomsinteger19

ipnfoms FIX : number of available figures of merit

ipvlamintegeripeqns+2*ipnvars+1
iptntinteger(ipeqns*(3*ipeqns+13))/2
ipvp1integeripnvars+1
ioptimzintegerNone

ioptimz /1/ : code operation switch:

  • = -2 for no optimisation, no VMCOM or HYBRD;
  • = -1 for no optimisation, HYBRD only;
  • = 0 for HYBRD and VMCON (not recommended);
  • = 1 for optimisation, VMCON only

minmax /7/ : switch for figure-of-merit (see lablmm for descriptions) negative => maximise, positive => minimise

minmaxintegerNone
lablmmcharacterNone

lablmm(ipnfoms) : labels describing figures of merit:


  • ( 1) major radius
  • ( 2) not used
  • ( 3) neutron wall load
  • ( 4) P_tf + P_pf
  • ( 5) fusion gain Q
  • ( 6) cost of electricity
  • ( 7) capital cost (direct cost if ireactor=0, constructed cost otherwise)
  • ( 8) aspect ratio
  • ( 9) divertor heat load
  • (10) toroidal field
  • (11) total injected power
  • (12) hydrogen plant capital cost OBSOLETE
  • (13) hydrogen production rate OBSOLETE
  • (14) pulse length
  • (15) plant availability factor (N.B. requires iavail=1 to be set)
  • (16) linear combination of major radius (minimised) and pulse length (maximised) note: FoM should be minimised only!
  • (17) net electrical output
  • (18) Null Figure of Merit
  • (19) linear combination of big Q and pulse length (maximised) note: FoM should be minimised only!

ncallsintegerNone

ncalls : number of function calls during solution

neqnsintegerNone

neqns /0/ : number of equality constraints to be satisfied

nfev1integerNone

nfev1 : number of calls to FCNHYB (HYBRD function caller) made

nfev2integerNone

nfev2 : number of calls to FCNVMC1 (VMCON function caller) made

nineqnsintegerNone

nineqns /0/ : number of inequality constraints VMCON must satisfy (leave at zero for now)

nvarintegerNone

nvar /16/ : number of iteration variables to use

nviterintegerNone

nviter : number of VMCON iterations performed

icc(ipeqns) /0/ : array defining which constraint equations to activate (see lablcc for descriptions)

iccintegerNone
active_constraintslogicalNone

active_constraints(ipeqns) : Logical array showing which constraints are active

lablcccharacterNone

lablcc(ipeqns) : labels describing constraint equations (corresponding itvs)


  • ( 1) Beta (consistency equation) (itv 5)
  • ( 2) Global power balance (consistency equation) (itv 10,1,2,3,4,6,11)
  • ( 3) Ion power balance DEPRECATED (itv 10,1,2,3,4,6,11)
  • ( 4) Electron power balance DEPRECATED (itv 10,1,2,3,4,6,11)
  • ( 5) Density upper limit (itv 9,1,2,3,4,5,6)
  • ( 6) (Epsilon x beta poloidal) upper limit (itv 8,1,2,3,4,6)
  • ( 7) Beam ion density (NBI) (consistency equation) (itv 7)
  • ( 8) Neutron wall load upper limit (itv 14,1,2,3,4,6)
  • ( 9) Fusion power upper limit (itv 26,1,2,3,4,6)
  • (10) Toroidal field 1/R (consistency equation) (itv 12,1,2,3,13 )
  • (11) Radial build (consistency equation) (itv 3,1,13,16,29,42,61)
  • (12) Volt second lower limit (STEADY STATE) (itv 15,1,2,3)
  • (13) Burn time lower limit (PULSE) (itv 21,1,16,17,29,42,44,61) (itv 19,1,2,3,6)
  • (14) Neutral beam decay lengths to plasma centre (NBI) (consistency equation)
  • (15) LH power threshold limit (itv 103)
  • (16) Net electric power lower limit (itv 25,1,2,3)
  • (17) Radiation fraction upper limit (itv 28)
  • (18) Divertor heat load upper limit (itv 27)
  • (19) MVA upper limit (itv 30)
  • (20) Neutral beam tangency radius upper limit (NBI) (itv 33,31,3,13)
  • (21) Plasma minor radius lower limit (itv 32)
  • (22) Divertor collisionality upper limit (itv 34,43)
  • (23) Conducting shell to plasma minor radius ratio upper limit (itv 104,1,74)
  • (24) Beta upper limit (itv 36,1,2,3,4,6,18)
  • (25) Peak toroidal field upper limit (itv 35,3,13,29)
  • (26) Central solenoid EOF current density upper limit (ipfres=0) (itv 38,37,41,12)
  • (27) Central solenoid BOP current density upper limit (ipfres=0) (itv 39,37,41,12)
  • (28) Fusion gain Q lower limit (itv 45,47,40)
  • (29) Inboard radial build consistency (itv 3,1,13,16,29,42,61)
  • (30) Injection power upper limit (itv 46,47,11)
  • (31) TF coil case stress upper limit (SCTF) (itv 48,56,57,58,59,60,24)
  • (32) TF coil conduit stress upper limit (SCTF) (itv 49,56,57,58,59,60,24)
  • (33) I_op / I_critical (TF coil) (SCTF) (itv 50,56,57,58,59,60,24)
  • (34) Dump voltage upper limit (SCTF) (itv 51,52,56,57,58,59,60,24)
  • (35) J_winding pack/J_protection upper limit (SCTF) (itv 53,56,57,58,59,60,24)
  • (36) TF coil temperature margin lower limit (SCTF) (itv 54,55,56,57,58,59,60,24)
  • (37) Current drive gamma upper limit (itv 40,47)
  • (38) First wall coolant temperature rise upper limit (itv 62)
  • (39) First wall peak temperature upper limit (itv 63)
  • (40) Start-up injection power lower limit (PULSE) (itv 64)
  • (41) Plasma current ramp-up time lower limit (PULSE) (itv 66,65)
  • (42) Cycle time lower limit (PULSE) (itv 17,67,65)
  • (43) Average centrepost temperature (TART) (consistency equation) (itv 13,20,69,70)
  • (44) Peak centrepost temperature upper limit (TART) (itv 68,69,70)
  • (45) Edge safety factor lower limit (TART) (itv 71,1,2,3)
  • (46) Equation for Ip/Irod upper limit (TART) (itv 72,2,60)
  • (47) NOT USED
  • (48) Poloidal beta upper limit (itv 79,2,3,18)
  • (49) NOT USED
  • (50) IFE repetition rate upper limit (IFE)
  • (51) Startup volt-seconds consistency (PULSE) (itv 16,29,3,1)
  • (52) Tritium breeding ratio lower limit (itv 89,90,91)
  • (53) Neutron fluence on TF coil upper limit (itv 92,93,94)
  • (54) Peak TF coil nuclear heating upper limit (itv 95,93,94)
  • (55) Vacuum vessel helium concentration upper limit iblanket =2 (itv 96,93,94)
  • (56) Pseparatrix/Rmajor upper limit (itv 97,1,3)
  • (57) NOT USED
  • (58) NOT USED
  • (59) Neutral beam shine-through fraction upper limit (NBI) (itv 105,6,19,4 )
  • (60) Central solenoid temperature margin lower limit (SCTF) (itv 106)
  • (61) Minimum availability value (itv 107)
  • (62) taup/taueff the ratio of particle to energy confinement times (itv 110)
  • (63) The number of ITER-like vacuum pumps niterpump < tfno (itv 111)
  • (64) Zeff less than or equal to zeffmax (itv 112)
  • (65) Dump time set by VV loads (itv 56, 113)
  • (66) Limit on rate of change of energy in poloidal field (Use iteration variable 65(tohs), 115)
  • (67) Simple Radiation Wall load limit (itv 116, 4,6)
  • (68) Psep * Bt / qAR upper limit (itv 117)
  • (69) ensure separatrix power = the value from Kallenbach divertor (itv 118)
  • (70) ensure that teomp = separatrix temperature in the pedestal profile, (itv 119 (tesep))
  • (71) ensure that neomp = separatrix density (nesep) x neratio
  • (72) central solenoid shear stress limit (Tresca yield criterion) (itv 123 foh_stress)
  • (73) Psep >= Plh + Paux (itv 137 (fplhsep))
  • (74) TFC quench < tmax_croco (itv 141 (fcqt))
  • (75) TFC current/copper area < Maximum (itv 143 f_coppera_m2)
  • (76) Eich critical separatrix density
  • (77) TF coil current per turn upper limit
  • (78) Reinke criterion impurity fraction lower limit (itv 147 freinke)
  • (79) Peak CS field upper limit (itv 149 fbmaxcs)
  • (80) Divertor power lower limit pdivt (itv 153 fpdivlim)
  • (81) Ne(0) > ne(ped) constraint (itv 154 fne0)
  • (82) toroidalgap > tftort constraint (itv 171 ftoroidalgap)
  • (83) Radial build consistency for stellarators (itv 172 f_avspace)
  • (84) Lower limit for beta (itv 173 fbetatry_lower)
  • (85) Constraint for CP lifetime
  • (86) Constraint for TF coil turn dimension
  • (87) Constraint for cryogenic power
  • (88) Constraint for TF coil strain absolute value
  • (89) Constraint for CS coil quench protection
  • (90) Lower Limit on number of stress load cycles for CS (itr 167 fncycle)
  • (91) Checking if the design point is ECRH ignitable (itv 168 fecrh_ignition)

ixcintegerNone

ixc(ipnvars) /0/ : array defining which iteration variables to activate (see lablxc for descriptions)

lablxccharacterNone

lablxc(ipnvars) : labels describing iteration variables


  • ( 1) aspect
  • ( 2) bt
  • ( 3) rmajor
  • ( 4) te
  • ( 5) beta
  • ( 6) dene
  • ( 7) rnbeam
  • ( 8) fbeta (f-value for equation 6)
  • ( 9) fdene (f-value for equation 5)
  • (10) hfact
  • (11) pheat
  • (12) oacdcp
  • (13) tfcth (NOT RECOMMENDED)
  • (14) fwalld (f-value for equation 8)
  • (15) fvs (f-value for equation 12)
  • (16) ohcth
  • (17) tdwell
  • (18) q
  • (19) enbeam
  • (20) tcpav
  • (21) ftburn (f-value for equation 13)
  • (22) NOT USED
  • (23) fcoolcp
  • (24) NOT USED
  • (25) fpnetel (f-value for equation 16)
  • (26) ffuspow (f-value for equation 9)
  • (27) fhldiv (f-value for equation 18)
  • (28) fradpwr (f-value for equation 17), total radiation fraction
  • (29) bore
  • (30) fmva (f-value for equation 19)
  • (31) gapomin
  • (32) frminor (f-value for equation 21)
  • (33) fportsz (f-value for equation 20)
  • (34) fdivcol (f-value for equation 22)
  • (35) fpeakb (f-value for equation 25)
  • (36) fbetatry (f-value for equation 24)
  • (37) coheof
  • (38) fjohc (f-value for equation 26)
  • (39) fjohc0 (f-value for equation 27)
  • (40) fgamcd (f-value for equation 37)
  • (41) fcohbop
  • (42) gapoh
  • (43) NOT USED
  • (44) fvsbrnni
  • (45) fqval (f-value for equation 28)
  • (46) fpinj (f-value for equation 30)
  • (47) feffcd
  • (48) fstrcase (f-value for equation 31)
  • (49) fstrcond (f-value for equation 32)
  • (50) fiooic (f-value for equation 33)
  • (51) fvdump (f-value for equation 34)
  • (52) NOT USED
  • (53) fjprot (f-value for equation 35)
  • (54) ftmargtf (f-value for equation 36)
  • (55) NOT USED
  • (56) tdmptf
  • (57) thkcas
  • (58) thwcndut
  • (59) fcutfsu
  • (60) cpttf
  • (61) gapds
  • (62) fdtmp (f-value for equation 38)
  • (63) ftpeak (f-value for equation 39)
  • (64) fauxmn (f-value for equation 40)
  • (65) tohs
  • (66) ftohs (f-value for equation 41)
  • (67) ftcycl (f-value for equation 42)
  • (68) fptemp (f-value for equation 44)
  • (69) rcool
  • (70) vcool
  • (71) fq (f-value for equation 45)
  • (72) fipir (f-value for equation 46)
  • (73) scrapli
  • (74) scraplo
  • (75) tfootfi
  • (76) NOT USED
  • (77) NOT USED
  • (78) NOT USED
  • (79) fbetap (f-value for equation 48)
  • (80) NOT USED
  • (81) edrive
  • (82) drveff
  • (83) tgain
  • (84) chrad
  • (85) pdrive
  • (86) frrmax (f-value for equation 50)
  • (87) NOT USED
  • (88) NOT USED
  • (89) ftbr (f-value for equation 52)
  • (90) blbuith
  • (91) blbuoth
  • (92) fflutf (f-value for equation 53)
  • (93) shldith
  • (94) shldoth
  • (95) fptfnuc (f-value for equation 54)
  • (96) fvvhe (f-value for equation 55)
  • (97) fpsepr (f-value for equation 56)
  • (98) li6enrich
  • (99) NOT USED
  • (100) NOT USED
  • (101) NOT USED
  • (102) fimpvar # OBSOLETE
  • (103) flhthresh (f-value for equation 15)
  • (104) fcwr (f-value for equation 23)
  • (105) fnbshinef (f-value for equation 59)
  • (106) ftmargoh (f-value for equation 60)
  • (107) favail (f-value for equation 61)
  • (108) breeder_f: Volume of Li4SiO4 / (Volume of Be12Ti + Li4SiO4)
  • (109) ralpne: thermal alpha density / electron density
  • (110) ftaulimit: Lower limit on taup/taueff the ratio of alpha
  • (111) fniterpump: f-value for constraint that number
  • (112) fzeffmax: f-value for max Zeff (f-value for equation 64)
  • (113) ftaucq: f-value for minimum quench time (f-value for equation 65)
  • (114) fw_channel_length: Length of a single first wall channel
  • (115) fpoloidalpower: f-value for max rate of change of
  • (116) fradwall: f-value for radiation wall load limit (eq. 67)
  • (117) fpsepbqar: f-value for Psep*Bt/qar upper limit (eq. 68)
  • (118) fpsep: f-value to ensure separatrix power is less than
  • (119) tesep: separatrix temperature calculated by the Kallenbach divertor model
  • (120) ttarget: Plasma temperature adjacent to divertor sheath [eV]
  • (121) neratio: ratio of mean SOL density at OMP to separatrix density at OMP
  • (122) oh_steel_frac : streel fraction of Central Solenoid
  • (123) foh_stress : f-value for CS coil Tresca yield criterion (f-value for eq. 72)
  • (124) qtargettotal : Power density on target including surface recombination [W/m2]
  • (125) fimp(3) : Beryllium density fraction relative to electron density
  • (126) fimp(4) : Carbon density fraction relative to electron density
  • (127) fimp(5) : Nitrogen fraction relative to electron density
  • (128) fimp(6) : Oxygen density fraction relative to electron density
  • (129) fimp(7) : Neon density fraction relative to electron density
  • (130) fimp(8) : Silicon density fraction relative to electron density
  • (131) fimp(9) : Argon density fraction relative to electron density
  • (132) fimp(10) : Iron density fraction relative to electron density
  • (133) fimp(11) : Nickel density fraction relative to electron density
  • (134) fimp(12) : Krypton density fraction relative to electron density
  • (135) fimp(13) : Xenon density fraction relative to electron density
  • (136) fimp(14) : Tungsten density fraction relative to electron density
  • (137) fplhsep (f-value for equation 73)
  • (138) rebco_thickness : thickness of REBCO layer in tape (m)
  • (139) copper_thick : thickness of copper layer in tape (m)
  • (140) dr_tf_wp : radial thickness of TFC winding pack (m)
  • (141) fcqt : TF coil quench temperature < tmax_croco (f-value for equation 74)
  • (142) nesep : electron density at separatrix [m-3]
  • (143) f_copperA_m2 : TF coil current / copper area < Maximum value
  • (144) fnesep : Eich critical electron density at separatrix
  • (145) fgwped : fraction of Greenwald density to set as pedestal-top density
  • (146) fcpttf : F-value for TF coil current per turn limit (constraint equation 77)
  • (147) freinke : F-value for Reinke detachment criterion (constraint equation 78)
  • (148) fzactual : fraction of impurity at SOL with Reinke detachment criterion
  • (149) fbmaxcs : F-value for max peak CS field (con. 79, itvar 149)
  • (150) REMOVED
  • (151) REMOVED
  • (152) fgwsep : Ratio of separatrix density to Greenwald density
  • (153) fpdivlim : F-value for minimum pdivt (con. 80)
  • (154) fne0 : F-value for ne(0) > ne(ped) (con. 81)
  • (155) pfusife : IFE input fusion power (MW) (ifedrv=3 only)
  • (156) rrin : Input IFE repetition rate (Hz) (ifedrv=3 only)
  • (157) fvssu : F-value for available to required start up flux (con. 51)
  • (158) croco_thick : Thickness of CroCo copper tube (m)
  • (159) ftoroidalgap : F-value for toroidalgap > tftort constraint (con. 82)
  • (160) f_avspace (f-value for equation 83)
  • (161) fbetatry_lower (f-value for equation 84)
  • (162) r_cp_top : Top outer radius of the centropost (ST only) (m)
  • (163) f_t_turn_tf : f-value for TF coils WP trurn squared dimension constraint
  • (164) f_crypmw : f-value for cryogenic plant power
  • (165) fstr_wp : f-value for TF coil strain absolute value
  • (166) f_copperaoh_m2 : CS coil current /copper area < Maximum value
  • (167) fncycle : f-value for minimum CS coil stress load cycles
  • (168) fecrh_ignition: f-value for equation 91
  • (169) te0_ecrh_achievable: Max. achievable electron temperature at ignition point
  • (170) beta_div : field line angle wrt divertor target plate (degrees)
  • (171) casths_fraction : TF side case thickness as fraction of toridal case thickness
  • (172) casths : TF side case thickness [m]
  • (173) EMPTY : Description
  • (174) EMPTY : Description
  • (175) EMPTY : Description

name_xccharacterNone
sqsumsqrealNone

sqsumsq : sqrt of the sum of the square of the constraint residuals

objf_namecharacterNone

Description of the objective function

norm_objfrealNone

Normalised objective function (figure of merit)

epsfcnrealNone

epsfcn /1.0e-3/ : finite difference step length for HYBRD/VMCON derivatives

epsvmcrealNone

epsvmc /1.0e-6/ : error tolerance for VMCON

factorrealNone

factor /0.1/ : used in HYBRD for first step size

ftolrealNone

ftol /1.0e-4/ : error tolerance for HYBRD

boundlrealNone

boundl(ipnvars) /../ : lower bounds used on ixc variables during VMCON optimisation runs

boundurealNone
bondlrealNone
bondurealNone
rcmrealNone
resdlrealNone
scafcrealNone
scalerealNone
xcmrealNone
xcsrealNone
vlamrealNone

cost_variables

Variable nameTypeInitialDescription
abktflncrealNone

allowable first wall/blanket neutron fluence (MW-yr/m2) (blktmodel=0)

adivflncrealNone

allowable divertor heat fluence (MW-yr/m2)

blkcstrealNone

blanket direct cost (M$)

c221realNone

total account 221 cost (M$) - first wall, blanket, shield, support structure and div plates

c222realNone

total account 222 cost (M$) - TF coils + PF coils

capcostrealNone

total capital cost including interest (M$)

cconfixrealNone

fixed cost of superconducting cable ($/m)

cconshpfrealNone

cost of PF coil steel conduit/sheath ($/m)

cconshtfrealNone

cost of TF coil steel conduit/sheath ($/m)

cdcostrealNone

current drive direct costs (M$)

cdirtrealNone

total plant direct cost (M$)

cdrliferealNone

lifetime of heating/current drive system (y)

cfactrrealNone

Total plant availability fraction; input if iavail=0

cpfactrealNone

Total plant capacity factor

cfindrealNone

indirect cost factor (func of lsa) (cost model = 0)

clandrealNone

cost of land (M$)

coerealNone

cost of electricity ($/MW-hr)

coecaprealNone

capital cost of electricity (m$/kW-hr)

coefueltrealNone

'fuel' (including replaceable components) contribution to cost of electricity (m$/kW-hr)

coeoamrealNone

operation and maintenance contribution to cost of electricity (m$/kW-hr)

concostrealNone

plant construction cost (M$)

costexprealNone

cost exponent for scaling in 2015 costs model

costexp_pebblesrealNone

cost exponent for pebbles in 2015 costs model

cost_factor_buildingsrealNone

cost scaling factor for buildings

cost_factor_landrealNone

cost scaling factor for land

cost_factor_tf_coilsrealNone

cost scaling factor for TF coils

cost_factor_fwbsrealNone

cost scaling factor for fwbs

cost_factor_rhrealNone

cost scaling factor for remote handling

cost_factor_vvrealNone

cost scaling factor for vacuum vessel

cost_factor_boprealNone

cost scaling factor for energy conversion system

cost_factor_miscrealNone

cost scaling factor for remaining subsystems

maintenance_fwbsrealNone

Maintenance cost factor: first wall, blanket, shield, divertor

maintenance_genrealNone

Maintenance cost factor: All other components except coils, vacuum vessel, thermal shield, cryostat, land

amortizationrealNone

amortization factor (fixed charge factor) "A" (years)

cost_modelintegerNone

Switch for cost model:

  • =0 use $ 1990 PROCESS model
  • =1 use $ 2014 Kovari model
  • =2 use user-provided model
i_cp_lifetimeintegerNone

Switch for the centrepost lifetime constraint 0 : The CP full power year lifetime is set by the user via cplife_input 1 : The CP lifetime is equal to the divertor lifetime 2 : The CP lifetime is equal to the breeding blankets lifetime 3 : The CP lifetime is equal to the plant lifetime

cownerrealNone

owner cost factor

cplife_inputrealNone

User input full power year lifetime of the centrepost (years) (i_cp_lifetime = 0)

cpliferealNone

Calculated full power year lifetime of centrepost (years)

cpstcstrealNone

ST centrepost direct cost (M$)

cpstflncrealNone

allowable ST centrepost neutron fluence (MW-yr/m2)

crctcorerealNone

reactor core costs (categories 221, 222 and 223)

csirealNone

allowance for site costs (M$)

cturbbrealNone

cost of turbine building (M$)

decomfrealNone

proportion of constructed cost required for decommissioning fund

dintrtrealNone

diff between borrowing and saving interest rates

divcstrealNone

divertor direct cost (M$)

divliferealNone

Full power lifetime of divertor (y)

dtliferealNone

period prior to the end of the plant life that the decommissioning fund is used (years)

fcap0realNone

average cost of money for construction of plant assuming design/construction time of six years

fcap0cprealNone

average cost of money for replaceable components assuming lead time for these of two years

fcdfuelrealNone

fraction of current drive cost treated as fuel (if ifueltyp = 1)

fcontngrealNone

project contingency factor

fcr0realNone

fixed charge rate during construction

fkindrealNone

multiplier for Nth of a kind costs

fwallcstrealNone

first wall cost (M$)

iavailintegerNone

Switch for plant availability model:

  • =0 use input value for cfactr
  • =1 calculate cfactr using Taylor and Ward 1999 model
  • =2 calculate cfactr using new (2015) model
  • =3 calculate cfactr using ST model
ibkt_lifeintegerNone

Switch for fw/blanket lifetime calculation in availability module:

  • =0 use neutron fluence model
  • =1 use fusion power model (DEMO only)
life_dparealNone

Allowable DPA from DEMO fw/blanket lifetime calculation in availability module

bktcyclesrealNone

Number of fusion cycles to reach allowable DPA from DEMO fw/blanket lifetime calculation

avail_minrealNone

Minimum availability (constraint equation 61)

tok_build_cost_per_volrealNone

Unit cost for tokamak complex buildings, including building and site services ($/m3)

light_build_cost_per_volrealNone

Unit cost for unshielded non-active buildings ($/m3)

favailrealNone

F-value for minimum availability (constraint equation 61)

num_rh_systemsintegerNone

Number of remote handling systems (1-10)

conf_magrealNone

c parameter, which determines the temperature margin at which magnet lifetime starts to decline

div_prob_failrealNone

Divertor probability of failure (per op day)

div_umain_timerealNone

Divertor unplanned maintenance time (years)

div_nrefrealNone

Reference value for cycle cycle life of divertor

div_nurealNone

The cycle when the divertor fails with 100% probability

fwbs_nrefrealNone

Reference value for cycle life of blanket

fwbs_nurealNone

The cycle when the blanket fails with 100% probability

fwbs_prob_failrealNone

Fwbs probability of failure (per op day)

fwbs_umain_timerealNone

Fwbs unplanned maintenance time (years)

redun_vacprealNone

Vacuum system pump redundancy level (%)

redun_vacintegerNone

Number of redundant vacuum pumps

t_operationrealNone

Operational time (yrs)

tbktreplrealNone

time taken to replace blanket (y) (iavail=1)

tcomreplrealNone

time taken to replace both blanket and divertor (y) (iavail=1)

tdivreplrealNone

time taken to replace divertor (y) (iavail=1)

uuboprealNone

unplanned unavailability factor for balance of plant (iavail=1)

uucdrealNone

unplanned unavailability factor for current drive (iavail=1)

uudivrealNone

unplanned unavailability factor for divertor (iavail=1)

uufuelrealNone

unplanned unavailability factor for fuel system (iavail=1)

uufwrealNone

unplanned unavailability factor for first wall (iavail=1)

uumagrealNone

unplanned unavailability factor for magnets (iavail=1)

uuvesrealNone

unplanned unavailability factor for vessel (iavail=1)

ifueltypintegerNone

Switch for fuel type:

  • =2 treat initial blanket, divertor, first wall as capital costs. Treat all later items and fraction fcdfuel of CD equipment as fuel costs
  • =1 treat blanket divertor, first wall and fraction fcdfuel of CD equipment as fuel cost
  • =0 treat these as capital cost
ipnetintegerNone

Switch for net electric power calculation:

  • =0 scale so that always > 0
  • =1 let go < 0 (no c-o-e)
ireactorintegerNone

Switch for net electric power and cost of electricity calculations:

  • =0 do not calculate MW(electric) or c-o-e
  • =1 calculate MW(electric) and c-o-e
lsaintegerNone

Level of safety assurance switch (generally, use 3 or 4):

  • =1 truly passively safe plant
  • =2,3 in-between
  • =4 like current fission plant
moneyintrealNone

interest portion of capital cost (M$)

output_costsintegerNone

Switch for costs output:

  • =0 do not write cost-related outputs to file
  • =1 write cost-related outputs to file
discount_raterealNone

effective cost of money in constant dollars

startupratiorealNone

ratio of additional HCD power for start-up to flat-top operational requirements

startuppwrrealNone

cost associated with additional HCD system power required on start-up ($)

supercond_cost_modelintegerNone

Switch for superconductor cost model:

  • =0 use $/kg
  • =1 use $/kAm
tliferealNone

Full power year plant lifetime (years)

tmainrealNone

Maintenance time for replacing CP (years) (iavail = 3)

u_unplanned_cprealNone

User-input CP unplanned unavailability (iavail = 3)

ucadreal180.0D0

unit cost for administration buildings (M$/m3)

ucafreal1.5D6

unit cost for aux facility power equipment ($)

ucahtsreal31.0D0

unit cost for aux heat transport equipment ($/W**exphts)

ucapreal17.0D0

unit cost of auxiliary transformer ($/kVA)

ucblberealNone

unit cost for blanket beryllium ($/kg)

ucblbreedrealNone

unit cost for breeder material ($/kg) (blktmodel>0)

ucbllirealNone

unit cost for blanket lithium ($/kg) (30% Li6)

ucblli2orealNone

unit cost for blanket Li_2O ($/kg)

ucbllipbrealNone

unit cost for blanket Li-Pb ($/kg) (30% Li6)

ucblssrealNone

unit cost for blanket stainless steel ($/kg)

ucblvdrealNone

unit cost for blanket vanadium ($/kg)

ucbpmpreal2.925D5

vacuum system backing pump cost ($)

ucbusrealNone

cost of aluminium bus for TF coil ($/A-m)

uccaserealNone

cost of superconductor case ($/kg)

uccoreal350.0D0

unit cost for control buildings (M$/m3)

uccpcl1realNone

cost of high strength tapered copper ($/kg)

uccpclbrealNone

cost of TF outboard leg plate coils ($/kg)

uccpmpreal3.9D5

vacuum system cryopump cost ($)

uccrreal460.0D0

unit cost for cryogenic building (M$/vol)

uccryrealNone

heat transport system cryoplant costs ($/W**expcry)

uccryorealNone

unit cost for vacuum vessel ($/kg)

uccurealNone

unit cost for copper in superconducting cable ($/kg)

ucdgenreal1.7D6

cost per 8 MW diesel generator ($)

ucdivrealNone

cost of divertor blade ($)

ucdtcreal13.0D0

detritiation, air cleanup cost ($/10000m3/hr)

ucductreal4.225D4

vacuum system duct cost ($/m)

ucechrealNone

ECH system cost ($/W)

ucelreal380.0D0

unit cost for electrical equipment building (M$/m3)

uces1real3.2D4

MGF (motor-generator flywheel) cost factor ($/MVA**0.8)

uces2real8.8D3

MGF (motor-generator flywheel) cost factor ($/MJ**0.8)

ucf1realNone

cost of fuelling system ($)

ucfncrealNone

outer PF coil fence support cost ($/kg)

ucfprreal4.4D7

cost of 60g/day tritium processing unit ($)

ucfuelrealNone

unit cost of D-T fuel (M$/year/1200MW)

ucfwareal6.0D4

first wall armour cost ($/m2)

ucfwpsreal1.0D7

first wall passive stabiliser cost ($)

ucfwsreal5.3D4

first wall structure cost ($/m2)

ucgssreal35.0D0

cost of reactor structure ($/kg)

uche3realNone

cost of helium-3 ($/kg)

uchrsrealNone

cost of heat rejection system ($)

uchtsrealNone

cost of heat transport system equipment per loop ($/W); dependent on coolant type (coolwh)

uciacrealNone

cost of instrumentation, control & diagnostics ($)

ucichrealNone

ICH system cost ($/W)

ucintreal35.0D0

superconductor intercoil structure cost ($/kg)

uclhrealNone

lower hybrid system cost ($/W)

uclvreal16.0D0

low voltage system cost ($/kVA)

ucmbreal260.0D0

unit cost for reactor maintenance building (M$/m3)

ucmerealNone

cost of maintenance equipment ($)

ucmiscrealNone

miscellaneous plant allowance ($)

ucnbirealNone

NBI system cost ($/W)

ucnbvreal1000.0D0

cost of nuclear building ventilation ($/m3)

ucoamrealNone

annual cost of operation and maintenance (M$/year/1200MW**0.5)

ucpensrealNone

penetration shield cost ($/kg)

ucpfbrealNone

cost of PF coil buses ($/kA-m)

ucpfbkrealNone

cost of PF coil DC breakers ($/MVA**0.7)

ucpfbsrealNone

cost of PF burn power supplies ($/kW**0.7)

ucpfcbrealNone

cost of PF coil AC breakers ($/circuit)

ucpfdr1realNone

cost factor for dump resistors ($/MJ)

ucpficrealNone

cost of PF instrumentation and control ($/channel)

ucpfpsrealNone

cost of PF coil pulsed power supplies ($/MVA)

ucphxreal15.0D0

primary heat transport cost ($/W**exphts)

ucppreal48.0D0

cost of primary power transformers ($/kVA**0.9)

ucrbrealNone

cost of reactor building (M$/m3)

ucscrealNone

cost of superconductor ($/kg)

sc_mat_cost_0realNone

cost of superconductor ($/kA m) at 6.4 T, 4.2 K

ucshreal115.0D0

cost of shops and warehouses (M$/m3)

ucshldrealNone

cost of shield structural steel ($/kg)

ucswydreal1.84D7

switchyard equipment costs ($)

uctfbrrealNone

cost of TF coil breakers ($/W**0.7)

uctfbusrealNone

cost of TF coil bus ($/kg)

uctfdrreal1.75D-4

cost of TF coil dump resistors ($/J)

uctfgrreal5000.0D0

additional cost of TF coil dump resistors ($/coil)

uctficreal1.0D4

cost of TF coil instrumentation and control ($/coil/30)

uctfpsrealNone

cost of TF coil power supplies ($/W**0.7)

uctfswrealNone

cost of TF coil slow dump switches ($/A)

uctpmpreal1.105D5

cost of turbomolecular pump ($)

uctrreal370.0D0

cost of tritium building ($/m3)

ucturbrealNone

cost of turbine plant equipment ($) (dependent on coolant type coolwh)

ucvalvreal3.9D5

vacuum system valve cost ($)

ucvdshreal26.0D0

vacuum duct shield cost ($/kg)

ucviacreal1.3D6

vacuum system instrumentation and control cost ($)

ucwindpfrealNone

cost of PF coil superconductor windings ($/m)

ucwindtfrealNone

cost of TF coil superconductor windings ($/m)

ucwsreal460.0D0

cost of active assembly shop ($/m3)

ucwstrealNone

cost of waste disposal (M$/y/1200MW)

tfcoil_variables

Variable nameTypeInitialDescription
acasetfrealNone

external case area per coil (inboard leg) (m2)

acasetforealNone

external case area per coil (outboard leg) (m2)

acndttfrealNone

area of the cable conduit (m2)

acondrealNone

Winding pack conductor area [m2] Does not include the area of voids and central helium channel

acstfrealNone

Cable space area (per turn) [m2] Includes the area of voids and central helium channel

insulation_arearealNone

single turn insulation area (m2)

aiwprealNone

winding pack turn insulation area per coil (m2)

sig_tf_case_maxrealNone

Allowable maximum shear stress (Tresca criterion) in TF coil case (Pa)

sig_tf_wp_maxrealNone

Allowable maximum shear stress (Tresca criterion) in TF coil conduit (Pa)

Allowable Tresca stress in TF coil structural material (Pa)

arealegrealNone

outboard TF leg area (m2)

aswprealNone

winding pack structure area (m2)

avwprealNone

winding pack void (He coolant) area (m2)

awphecrealNone

winding pack He coil area (m2)

bcritscrealNone

upper critical field (T) for Nb3Sn superconductor at zero temperature and strain (i_tf_sc_mat=4, =bc20m)

bmaxtfrealNone

mean peak field at TF coil (T)

bmaxtfrprealNone

peak field at TF conductor with ripple (T)

casestrrealNone

case strain

casthirealNone

inboard TF coil case plasma side thickness (m) (calculated for stellarators)

casthi_fractionrealNone

inboard TF coil case plasma side thickness as a fraction of tfcth

casthi_is_fractionlogicalNone

logical switch to make casthi a fraction of TF coil thickness (casthi_fraction)

casthsrealNone

inboard TF coil sidewall case thickness (m) (calculated for stellarators)

casths_fractionrealNone

inboard TF coil sidewall case thickness as a fraction of tftort

tfc_sidewall_is_fractionlogicalNone

logical switch to make casths a fraction of TF coil thickness (casths_fraction)

t_conductorrealNone

Conductor (cable + steel conduit) area averaged dimension [m]

t_turn_tfrealNone

TF coil turn edge length including turn insulation [m] If the turn is not a square (i_tf_turns_integer = 1) a squared turn of equivelent size is use to calculated this quantity If the t_turn_tf is non zero, cpttf is calculated

t_turn_tf_is_inputlogicalNone

Boolean switch to activated when the user set the TF coil turn dimensions Not an input

f_t_turn_tfrealNone

f-value for TF turn edge length constraint If the turn is not a square (i_tf_turns_integer = 1) a squared turn of equivelent size is use for this constraint iteration variable ixc = 175 constraint equation icc = 86

t_turn_tf_maxrealNone

TF turn edge length including turn insulation upper limit [m] If the turn is not a square (i_tf_turns_integer = 1) a squared turn of equivelent size is use for this constraint constraint equation icc = 86

t_cable_tfrealNone

TF coil superconducting cable squared/rounded dimensions [m] If the turn is not a square (i_tf_turns_integer = 1) a squared cable of equivelent size is use to calculated this quantity If the t_cable_tf is non zero, cpttf is calculated

t_cable_tf_is_inputlogicalNone

Boolean switch to activated when the user set the TF coil cable dimensions Not an input

acsrealNone

Area of space inside conductor (m2)

cdtflegrealNone

TF outboard leg current density (A/m2) (resistive coils only)

cforcerealNone

centering force on inboard leg (per coil) (N/m)

cplenrealNone

length of TF coil inboard leg ('centrepost') (i_tf_sup = 1)

cpttfrealNone

TF coil current per turn (A). (calculated for stellarators) (calculated for integer-turn TF coils i_tf_turns_integer=1) (iteration variable 60)

cpttf_maxrealNone

Max TF coil current per turn [A]. (for stellarators and i_tf_turns_integer=1) (constraint equation 77)

dcaserealNone

density of coil case (kg/m3)

dcondrealNone

density of superconductor type given by i_tf_sc_mat/isumatoh/isumatpf (kg/m3)

dcondinsrealNone

density of conduit + ground-wall insulation (kg/m3)

dhecoilrealNone

diameter of central helium channel in TF winding (m)

estotftgjrealNone

total stored energy in the toroidal field (GJ)

b_crit_upper_nbtirealNone

upper critical field of GL_nbti

t_crit_nbtirealNone

critical temperature of GL_nbti

max_force_densityrealNone

Maximal (WP averaged) force density in TF coils at 1 point. (MN/m3)

fcutfsurealNone

copper fraction of cable conductor (TF coils) (iteration variable 59)

fhtsrealNone

technology adjustment factor for critical current density fit for isumat..=2 Bi-2212 superconductor, to describe the level of technology assumed (i.e. to account for stress, fatigue, radiation, AC losses, joints or manufacturing variations; 1.0 would be very optimistic)

insstrainrealNone

Radial strain in insulator

i_tf_stress_modelintegerNone

Switch for the TF coil stress model 0 : Generalized plane strain formulation, Issues #977 and #991, O(n^3) 1 : Old plane stress model (only for SC) 2 : Axisymmetric extended plane strain, Issues #1414 and #998, O(n)

i_tf_trescaintegerNone

Switch for TF coil conduit Tresca stress criterion: 0 : Tresca (no adjustment); 1 : Tresca with CEA adjustment factors (radial+2%, vertical+60%)

i_tf_wp_geomintegerNone

Switch for TF WP geometry selection 0 : Rectangular geometry 1 : Double rectangular geometry 2 : Trapezoidal geometry (constant lateral casing thickness) Default setting for backward compatibility if i_tf_turns_integer = 0 : Double rectangular if i_tf_turns_integer = 1 : Rectangular

i_tf_case_geomintegerNone

Switch for TF case geometry selection 0 : Circular front case (ITER design) 1 : Straight front case

i_tf_turns_integerintegerNone

Switch for TF coil integer/non-integer turns: 0 : non-integer turns 1 : integer turns

i_tf_sc_matintegerNone

Switch for superconductor material in TF coils:

  • =1 ITER Nb3Sn critical surface model with standard ITER parameters
  • =2 Bi-2212 high temperature superconductor (range of validity T < 20K, adjusted field b < 104 T, B > 6 T)
  • =3 NbTi
  • =4 ITER Nb3Sn model with user-specified parameters
  • =5 WST Nb3Sn parameterisation
  • =6 REBCO HTS tape in CroCo strand
  • =7 Durham Ginzburg-Landau critical surface model for Nb-Ti
  • =8 Durham Ginzburg-Landau critical surface model for REBCO
  • =9 Hazelton experimental data + Zhai conceptual model for REBCO
i_tf_supintegerNone

Switch for TF coil conductor model:

  • =0 copper
  • =1 superconductor
  • =2 Cryogenic aluminium
i_tf_shapeintegerNone

Switch for TF coil toroidal shape:

  • =0 Default value : Picture frame coil for TART / PROCESS D-shape for non itart
  • =1 PROCESS D-shape : parametrise with 2 arcs
  • =2 Picture frame coils
i_tf_cond_eyoung_axialintegerNone

Switch for the behavior of the TF coil conductor elastic axial properties

  • =0 Young's modulus is set to zero, and the conductor is not considered in the stress calculation. This corresponds to the case that the conductor is much less stiff than the conduit, or the case that the conductor is prevented (isolated) from taking axial loads.
  • =1 Elastic properties are set by user input, using the variable eyoung_cond_axial
  • =2 Elastic properties are set to reasonable defaults taking into account the superconducting material i_tf_sc_mat
i_tf_cond_eyoung_transintegerNone

Switch for the behavior of the elastic properties of the TF coil conductorin the transverse direction. Only active if i_tf_cond_eyoung_axial == 2

  • =0 Cable not potted in solder. Transverse Young's modulus set to zero.
  • =1 Cable potted in solder. If i_tf_cond_eyoung_axial == 2, the transverse Young's modulus of the conductor is equal to the axial, which is set to a sensible material-dependent default.
n_pancakeintegerNone

Number of pancakes in TF coil. Only used if i_tf_turns_integer=1

n_layerintegerNone

Number of layers in TF coil. Only used if i_tf_turns_integer=1

n_rad_per_layerintegerNone

Size of the arrays per layers storing the radial dependent stress quantities (stresses, strain displacement etc..)

i_tf_buckingintegerNone

Switch for TF inboard suport structure design:

Default setting for backward compatibility - if copper resistive TF (i_tf_sup = 0) : Free standing TF without bucking structure - if Superconducting TF (i_tf_sup = 1) : Free standing TF with a steel casing - if aluminium TF (i_tf_sup = 2) : Free standing TF with a bucking structure Rem : the case is a bucking structure - =0 : Free standing TF without case/bucking cyliner (only a conductor layer) - =1 : Free standing TF with a case/bucking cylinder made of - if copper resistive TF (i_tf_sup = 0) : used defined bucking cylinder - if Superconducting TF (i_tf_sup = 1) : Steel casing - if aluminium resisitive TF (i_tf_sup = 2) : used defined bucking cylinder - =2 : The TF is in contact with the CS : "bucked and wedged design" Fast version : thin TF-CS interface neglected in the stress calculations (3 layers) The CS is frictionally decoupled from the TF, does not carry axial tension - =3 : The TF is in contact with the CS : "bucked and wedged design" Full version : thin TF-CS Kapton interface introduced in the stress calculations (4 layers) The CS and kaptop are frictionally decoupled from the TF, do not carry axial tension

n_tf_graded_layersintegerNone

Number of layers of different stress properties in the WP. If n_tf_graded_layers > 1, a graded coil is condidered

n_tf_stress_layersintegerNone

Number of layers considered for the inboard TF stress calculations set in initial.f90 from i_tf_bucking and n_tf_graded_layers

n_tf_wp_layersintegerNone

Maximum number of layers that can be considered in the TF coil composited/smeared stress analysis. This is the layers of one turn, not the entire WP. Default: 5. void, conductor, copper, conduit, insulation.

jbusrealNone

bussing current density (A/m2)

j_crit_str_tfrealNone

j_crit_str : superconductor strand critical current density under operating conditions (A/m2). Necessary for the cost calculation in $/kAm

j_crit_str_0realNone

j_crit_str_pf_0 : superconductor strand critical current density at 6 T and 4.2 K (A/m2) Necessary for the cost calculation in $/kAm

jwdgcrtrealNone

critical current density for winding pack (A/m2)

jwdgprorealNone

allowable TF coil winding pack current density, for dump temperature rise protection (A/m2)

jwptfrealNone

winding pack engineering current density (A/m2)

oacdcprealNone

Overall current density in TF coil inboard legs midplane (A/m2) Rem SK : Not used in tfcoil to set the current any more. Should not be used as iteration variable 12 any more. It is now calculated.

eyoung_insrealNone

Insulator Young's modulus [Pa]. Default value (1.0D8) setup the following values - SC TF, eyoung_ins = 20 Gpa (default value from DDD11-2 v2 2 (2009)) - Al TF, eyoung_ins = 2.5 GPa (Kapton polymer)

eyoung_steelrealNone

Steel case Young's modulus (Pa) (default value from DDD11-2 v2 2 (2009))

eyoung_cond_axialrealNone

SC TF coil conductor Young's modulus in the parallel (along the wire/tape) direction [Pa] Set by user input only if i_tf_cond_eyoung_axial == 1; otherwise set by the behavior of that switch.

eyoung_cond_transrealNone

SC TF coil conductor Young's modulus in the transverse direction [Pa] Set by user input only if i_tf_cond_eyoung_axial == 1; otherwise set by the behavior of that switch.

eyoung_res_tf_buckrealNone

Resistive TF magnets bucking cylinder young modulus (Pa)

eyoung_copperrealNone

Copper young modulus. Default value taken from wikipedia

eyoung_alrealNone

Aluminium young modulus. Default value taken from wikipedia

poisson_steelrealNone

Steel Poisson's ratio, Source : https://www.engineeringtoolbox.com/metals-poissons-ratio-d_1268.html

poisson_copperrealNone

Copper Poisson's ratio. Source : https://www.engineeringtoolbox.com/poissons-ratio-d_1224.html

poisson_alrealNone

Aluminium Poisson's ratio. Source : https://www.engineeringtoolbox.com/poissons-ratio-d_1224.html

poisson_insrealNone

Insulation Poisson's ratio. Default: Kapton. Source : DuPont™ Kapton® HN datasheet.

poisson_cond_axialrealNone

SC TF coil conductor Poisson's ratio in the parallel-transverse direction

poisson_cond_transrealNone

SC TF coil conductor Poisson's ratio in the transverse-transverse direction

rbmaxrealNone

Radius of maximum TF B-field (m)

tflegresrealNone

TF coil leg resistance (ohm)

toroidalgaprealNone

Minimal distance between two toroidal coils. (m)

ftoroidalgaprealNone

F-value for minimum tftort (constraint equation 82)

ripmaxrealNone

aximum allowable toroidal field ripple amplitude at plasma edge (%)

ripplerealNone

peak/average toroidal field ripple at plasma edge (%)

ritfcrealNone

total (summed) current in TF coils (A)

n_radial_arrayinteger50

Size of the radial distribution arrays per layers used for stress, strain and displacement distibution

radial_arrayrealNone

Array refining the radii of the stress calculations arrays

sig_tf_rrealNone

TF Inboard leg radial stress in steel r distribution at mid-plane [Pa]

sig_tf_trealNone

TF Inboard leg tangential stress in steel r distribution at mid-plane [Pa]

deflectrealNone

TF coil radial deflection (displacement) radial distribution [m]

sig_tf_zrealNone

TF Inboard leg vertical tensile stress in steel at mid-plane [Pa]

sig_tf_vmisesrealNone

TF Inboard leg Von-Mises stress in steel r distribution at mid-plane [Pa]

sig_tf_trescarealNone

TF Inboard leg maximum shear stress (Tresca criterion) in steel r distribution at mid-plane [Pa]

sig_tf_cs_buckedrealNone

Maximum shear stress (Tresca criterion) in CS structures at CS flux swing [Pa]:

  • If superconducting CS (ipfres = 0): turn steel conduits stress
  • If resistive CS (ipfres = 1): copper conductor stress

Quantity only computed for bucked and wedged design (i_tf_bucking >= 2) Def : CS Flux swing, instant when the current changes sign in CS (null current)

sig_tf_caserealNone

Maximum shear stress (Tresca criterion) in TF casing steel structures (Pa)

sig_tf_wprealNone
str_cs_con_resrealNone

Residual manufacturing strain in CS superconductor material

str_pf_con_resrealNone

Residual manufacturing strain in PF superconductor material

str_tf_con_resrealNone

Residual manufacturing strain in TF superconductor material If i_str_wp == 0, used to compute the critical surface. Otherwise, the self-consistent winding pack str_wp is used.

str_wprealNone

Axial (vertical) strain in the TF coil winding pack found by self-consistent stress/strain calculation. if i_str_wp == 1, used to compute the critical surface. Otherwise, the input value str_tf_con_res is used. Constrain the absolute value using constraint equation 88 You can't have constraint 88 and i_str_wp = 0 at the same time

str_wp_maxrealNone

Maximum allowed absolute value of the strain in the TF coil (Constraint equation 88)

i_str_wpintegerNone

Switch for the behavior of the TF strain used to compute the strain-dependent critical surface:

  • =0 str_tf_con_res is used
  • =1 str_wp is used
quench_modelcharacterNone

switch for TF coil quench model (Only applies to REBCO magnet at present, issue #522):

  • ='exponential' exponential quench with constant discharge resistor
  • ='linear' quench with constant voltage
time1realNone

Time at which TF quench is detected (s)

tcritscrealNone

critical temperature (K) for superconductor at zero field and strain (i_tf_sc_mat=4, =tc0m)

tdmptfrealNone

fast discharge time for TF coil in event of quench (s) (iteration variable 56)

For REBCO model, meaning depends on quench_model:

  • exponential quench : e-folding time (s)`
  • linear quench : discharge time (s)
tfareainrealNone

Area of inboard midplane TF legs (m2)

tfbuslrealNone

TF coil bus length (m)

tfbusmasrealNone

TF coil bus mass (kg)

tfckwrealNone

available DC power for charging the TF coils (kW)

tfcmwrealNone

Peak power per TF power supply (MW)

tfcpmwrealNone

Peak resistive TF coil inboard leg power (MW)

tfjtsmwrealNone

TF joints resistive power losses (MW)

tfcryoarearealNone

surface area of toroidal shells covering TF coils (m2)

tficrnrealNone

TF coil half-width - inner bore (m)

tfindrealNone

TF coil inductance (H)

tfinsgaprealNone

TF coil WP insertion gap (m)

tflegmwrealNone

TF coil outboard leg resistive power (MW)

rhocprealNone

TF coil inboard leg resistivity [Ohm-m]. If itart=0, this variable is the average resistivity over the whole magnet

rhotflegrealNone

Resistivity of a TF coil leg (Ohm-m)

rhotfbusrealNone

Resistivity of a TF coil bus (Ohm-m). Default value takes the same res as the leg one

frhocprealNone

Centrepost resistivity enhancement factor. For itart=0, this factor is used for the whole magnet

frholegrealNone

Ouboard legs resistivity enhancement factor. Only used for itart=1.

i_cp_jointsintegerNone

Switch for CP demoutable joints type -= 0 : Clampled joints -= 1 : Sliding joints Default value (-1) choses : Sliding joints for resistive magnets (i_tf_sup = 0, 2) Clampled joints for superconducting magents (i_tf_sup = 1)

rho_tf_jointsrealNone

TF joints surfacic resistivity [ohm.m]. Feldmetal joints assumed.

n_tf_joints_contactintegerNone

Number of contact per turn

n_tf_jointsintegerNone

Number of joints Ex: n_tf_joints = 2 for top and bottom CP joints

th_joint_contactrealNone

TF sliding joints contact pad width [m]

pres_jointsrealNone

Calculated TF joints resistive power losses [W]

tflengrealNone

TF coil circumference (m)

eff_tf_cryorealNone

TF cryoplant efficiency (compared to pefect Carnot cycle). Using -1 set the default value depending on magnet technology:

  • i_tf_sup = 1 : SC magnet, eff_tf_cryo = 0.13 (ITER design)
  • i_tf_sup = 2 : Cryo-aluminium, eff_tf_cryo = 0.4
n_tfrealNone

Number of TF coils (default = 50 for stellarators). Number of TF coils outer legs for ST

tfocrnrealNone

TF coil half-width - outer bore (m)

tfsairealNone

area of the inboard TF coil legs (m2)

tfsaorealNone

area of the outboard TF coil legs (m2)

tftmprealNone

peak helium coolant temperature in TF coils and PF coils (K)

tftortrealNone

TF coil toroidal thickness (m)

thicndutrealNone

conduit insulation thickness (m)

layer_insrealNone

Additional insulation thickness between layers (m)

thkcasrealNone

inboard TF coil case outer (non-plasma side) thickness (m) (iteration variable 57) (calculated for stellarators)

dr_tf_wprealNone

radial thickness of winding pack (m) (iteration variable 140) (issue #514)

thwcndutrealNone

TF coil conduit case thickness (m) (iteration variable 58)

tinstfrealNone

Thickness of the ground insulation layer surrounding (m) - Superconductor TF (i_tf_sup == 1) : The TF coil Winding packs - Resistive magnets (i_tf_sup /= 1) : The TF coil wedges Rem : Thickness calculated for stellarators.

tmargmin_tfrealNone

minimum allowable temperature margin : TF coils (K)

tmargmin_csrealNone

minimum allowable temperature margin : CS (K)

tmargminrealNone

minimum allowable temperature margin : TFC AND CS (K)

temp_marginrealNone

temperature margin (K)

tmargtfrealNone

TF coil temperature margin (K)

tmaxprorealNone

maximum temp rise during a quench for protection (K)

tmax_crocorealNone

CroCo strand: maximum permitted temp during a quench (K)

croco_quench_temperaturerealNone

CroCo strand: Actual temp reached during a quench (K)

tmpcryrealNone

coil temperature for cryogenic plant power calculation (K)

n_tf_turnrealNone

number of turns per TF coil

vdalwrealNone

max voltage across TF coil during quench (kV) (iteration variable 52)

vforcerealNone

vertical tension on inboard leg/coil (N)

f_vforce_inboardrealNone

Fraction of the total vertical force taken by the TF inboard leg tension Not used for resistive itart=1 (sliding joints)

vforce_outboardrealNone

Vertical tension on outboard leg/coil (N)

vftfrealNone

coolant fraction of TFC 'cable' (i_tf_sup=1), or of TFC leg (i_tf_ssup=0)

voltflegrealNone

volume of each TF coil outboard leg (m3)

vtfkvrealNone

TF coil voltage for resistive coil including bus (kV)

vtfskvrealNone

voltage across a TF coil during quench (kV)

whtcasrealNone

mass per coil of external case (kg)

whtconrealNone

TF coil conductor mass per coil (kg/coil). For itart=1, coil is return limb plus centrepost/n_tf

whtconcurealNone

copper mass in TF coil conductor (kg/coil). For itart=1, coil is return limb plus centrepost/n_tf

whtconalrealNone

Aluminium mass in TF coil conductor (kg/coil). For itart=1, coil is return limb plus centrepost/n_tf

whtconinrealNone

conduit insulation mass in TF coil conductor (kg/coil)

whtconscrealNone

superconductor mass in TF coil cable (kg/coil)

whtconshrealNone

steel conduit mass in TF coil conductor (kg/coil)

whtgwrealNone

mass of ground-wall insulation layer per coil (kg/coil)

whttfrealNone

total mass of the TF coils (kg)

wwp1realNone

width of first step of winding pack (m)

wwp2realNone

width of second step of winding pack (m)

dthetrealNone

angle of arc i (rad)

radctfrealNone

radius of arc i (m)

xarcrealNone

x location of arc point i on surface (m)

xctfcrealNone

x location of arc centre i (m)

yarcrealNone

y location of arc point i on surface (m)

yctfcrealNone

y location of arc centre i (m)

tfarealNone

Horizontal radius of inside edge of TF coil (m)

tfbrealNone

Vertical radius of inside edge of TF coil (m)

drtoprealNone

centrepost taper maximum radius adjustment (m)

dztoprealNone

centrepost taper height adjustment (m)

etapumprealNone

centrepost coolant pump efficiency

fcoolcprealNone

coolant fraction of TF coil inboard legs (iteration variable 23)

fcoollegrealNone

coolant fraction of TF coil outboard legs

a_cp_coolrealNone

Centrepost cooling area toroidal cross-section (constant over the whole CP)

ncoolrealNone

number of centrepost coolant tubes

ppumprealNone

centrepost coolant pump power (W)

prescprealNone

resistive power in the centrepost (itart=1) [W]. If itart=0, this variable is the ressitive power on the whole magnet

preslegrealNone

Summed resistive power in the TF coil legs [W]. Remain 0 if itart=0.

ptempalwrealNone

maximum peak centrepost temperature (K) (constraint equation 44)

rcoolrealNone

average radius of coolant channel (m) (iteration variable 69)

tcoolinrealNone

centrepost coolant inlet temperature (K)

dtiocoolrealNone

inlet / outlet TF coil coolant temperature rise (K)

tcpavrealNone

Average temperature of centrepost called CP (K). Only used for resistive coils to compute the resisitive heating. Must be an iteration variable for ST (itart=1) (iteration variable 20)

tcpav2realNone

Computed centrepost average temperature (K) (for consistency)

tlegavrealNone

Average temperature of the TF outboard legs [K]. If tlegav=-1.0, the ouboard legs and CP temperatures are the same. Fixed for now, should use a contraints eq like tcpav

tcpmaxrealNone

peak centrepost temperature (K)

vcoolrealNone

inlet centrepost coolant flow speed at midplane (m/s) (iteration variable 70)

vol_cond_cprealNone

Exact conductor volume in the centrepost (m3)

whtcprealNone

mass of TF coil inboard legs (kg)

whttflgsrealNone

mass of the TF coil legs (kg)

cryo_cool_reqrealNone

Cryo cooling requirement at helium temp 4.5K (kW)

theta1_coilrealNone

The angle of the outboard arc forming the TF coil current center line [deg]

theta1_vvrealNone

The angle of the outboard arc forming the Vacuum Vessel current center line [deg]

max_vv_stressrealNone

The allowable peak maximum shear stress in the vacuum vessel due to quench and fast discharge of the TF coils [Pa]

primary_pumping_variables

Variable nameTypeInitialDescription
gamma_herealNone

ratio of specific heats for helium (primary_pumping=3)

t_in_bbrealNone

temperature in FW and blanket coolant at blanket entrance (primary_pumping=3) [K]

t_out_bbrealNone

temperature in FW and blanket coolant at blanket exit (primary_pumping=3) [K]

p_herealNone

pressure in FW and blanket coolant at pump exit (primary_pumping=3) [Pa]

dp_herealNone

pressure drop in FW and blanket coolant including heat exchanger and pipes (primary_pumping=3) [Pa]

htpmw_fw_blktrealNone

mechanical pumping power for FW and blanket including heat exchanger and pipes (primary_pumping=3) [MW]

CS_fatigue_variables

Variable nameTypeInitialDescription
residual_sig_hooprealNone

residual hoop stress in strucutal material (Pa)

n_cyclerealNone

Allowable number of cycles for CS stress model

n_cycle_minrealNone

Minimum llowable number of cycles for CS stress model

t_crack_radialrealNone

Initial depth of crack in thickness of conduit (m)

t_crack_verticalrealNone

Inital vertical crack size (m)

t_structural_radialrealNone

Thickness of CS conductor conduit (m)

t_structural_verticalrealNone

Vertical thickness of CS conductor conduit (m)

bkt_life_csfrealNone

Switch to pass bkt_life cycles to n_cycle_min

sf_vertical_crackrealNone

Safety factor for vertical crack size (-)

sf_radial_crackrealNone

Safety factor for radial crack size (-)

sf_fast_fracturerealNone

safety factor for stress intensity factor (-)

paris_coefficientrealNone

Paris equation material coefficient (-)

paris_power_lawrealNone

Paris equation material power law (-)

walker_coefficientrealNone

walker coefficent (-)

fracture_toughnessrealNone

fracture toughness (MPa m^1/2)

divertor_variables

Variable nameTypeInitialDescription
adasrealNone

area divertor / area main plasma (along separatrix)

angincrealNone

angle of incidence of field line on plate (rad)

beta_divrealNone

field line angle wrt divertor target plate (degrees)

betairealNone

poloidal plane angle between divertor plate and leg, inboard (rad)

betaorealNone

poloidal plane angle between divertor plate and leg, outboard (rad)

bpsoutrealNone

reference B_p at outboard divertor strike point (T)

c1divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

c2divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

c3divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

c4divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

c5divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

c6divrealNone

fitting coefficient to adjust ptpdiv, ppdiv

delldrealNone

coeff for power distribution along main plasma

dendivrealNone

plasma density at divertor (10**20 /m3)

densinrealNone

density at plate (on separatrix) (10**20 /m3)

divclfrrealNone

divertor coolant fraction

divdensrealNone

divertor structure density (kg/m3)

divdumintegerNone

switch for divertor Zeff model:

  • =0 calc
  • =1 input
divfixrealNone

divertor structure vertical thickness (m)

divmasrealNone

divertor plate mass (kg)

divpltrealNone

divertor plate thickness (m) (from Spears, Sept 1990)

divsurrealNone

divertor surface area (m2)

fdfsrealNone

radial gradient ratio

fdivarealNone

divertor area fudge factor (for ITER, Sept 1990)

fhoutrealNone

fraction of power to outboard divertor (for single null)

fififirealNone

coefficient for gamdiv

flux_exprealNone

The plasma flux expansion in the divertor (default 2; Wade 2020)

frrprealNone

fraction of radiated power to plate

hldivrealNone

divertor heat load (MW/m2)

i_hldivintegerNone

switch for user input hldiv:

  • = 0: divtart model turned off and user inputs hldiv
  • = 1: divtart model calculates hldiv
  • = 2: divwade model calculates hldiv
hldivlimrealNone

heat load limit (MW/m2)

ksicrealNone

power fraction for outboard double-null scrape-off plasma

lamprealNone

power flow width (m)

minstangrealNone

minimum strike angle for heat flux calculation

omeganrealNone

pressure ratio (nT)_plasma / (nT)_scrape-off

omlargrealNone

power spillage to private flux factor

ppdivrrealNone

peak heat load at plate (with radiation) (MW/m2)

prn1realNone

n-scrape-off / n-average plasma; (input for ipedestal=0, = nesep/dene if ipedestal>=1)

ptpdivrealNone

peak temperature at the plate (eV)

rconlrealNone

connection length ratio, outboard side

rlclolcnrealNone

ratio of collision length / connection length

rlenmaxrealNone

maximum value for length ratio (rlclolcn) (constraintg eqn 22)

rsrdrealNone

effective separatrix/divertor radius ratio

tconlrealNone

main plasma connection length (m)

tdivrealNone

temperature at divertor (eV) (input for stellarator only, calculated for tokamaks)

tseprealNone

temperature at the separatrix (eV)

xparainrealNone

parallel heat transport coefficient (m2/s)

xpertinrealNone

perpendicular heat transport coefficient (m2/s)

zeffdivrealNone

Zeff in the divertor region (if divdum/=0)

stellarator_module

Variable nameTypeInitialDescription
f_nrealNone
f_rrealNone
f_aspectrealNone
f_brealNone
f_irealNone
f_arealNone
first_calllogical.true.
first_call_stfwbslogical.true.

vacuum_variables

Variable nameTypeInitialDescription
vacuum_modelcharacterNone

switch for vacuum pumping model:

  • ='old' for old detailed ETR model
  • ='simple' for simple steady-state model with comparison to ITER cryopumps
niterpumprealNone

number of high vacuum pumps (real number), each with the throughput of one ITER cryopump (50 Pa m3 s-1), all operating at the same time (vacuum_model='simple')

ntypeintegerNone

switch for vacuum pump type:

  • =0 - for turbomolecular pump (magnetic bearing) with speed of 2.0 m3/s (1.95 for N2, 1.8 for He, 1.8 for DT)
  • =1 - for compound cryopump with nominal speed of 10.0 m3/s (9.0 for N2, 5.0 for He and 25.0 for DT)
nvductintegerNone

number of ducts (torus to pumps)

dlscalrealNone

vacuum system duct length scaling

pbaserealNone

base pressure during dwell before gas pre-fill(Pa)

prdivrealNone

divertor chamber pressure during burn (Pa)

pumptprealNone

Pump throughput (molecules/s) (default is ITER value)

ratrealNone

plasma chamber wall outgassing rate (Pa-m/s)

tnrealNone

neutral gas temperature in chamber (K)

vacdshmrealNone

mass of vacuum duct shield (kg)

vcdimaxrealNone

diameter of duct passage (m)

vpumpnintegerNone

number of high vacuum pumps

dwell_pumpintegerNone

switch for dwell pumping options:

  • =0 pumping only during tdwell
  • =1 pumping only during tramp
  • =2 pumping during tdwell + tramp
pumpareafractionrealNone

area of one pumping port as a fraction of plasma surface area

pumpspeedmaxrealNone

maximum pumping speed per unit area for deuterium & tritium, molecular flow

pumpspeedfactorrealNone

effective pumping speed reduction factor due to duct impedance

initialpressurerealNone

initial neutral pressure at the beginning of the dwell phase (Pa)

outgasindexrealNone

outgassing decay index

outgasfactorrealNone

outgassing prefactor kw: outgassing rate at 1 s per unit area (Pa m s-1)

global_variables

Variable nameTypeInitialDescription
icasecharacterNone

power plant type

runtitlecharacterNone

short descriptive title for the run

verboseintegerNone

switch for turning on/off diagnostic messages

  • =0 turn off diagnostics
  • =1 turn on diagnostics
run_testsintegerNone

turns on built-in tests if set to 1

maxcalintegerNone

maximum number of VMCON iterations

fileprefixcharacterNone

input file prefix

output_prefixcharacterNone

output file prefix

xlabelcharacterNone

scan parameter description label

vlabelcharacterNone

scan value name label

xlabel_2characterNone

scan parameter description label (2nd dimension)

vlabel_2characterNone

scan value name label (2nd dimension)

iscan_globalintegerNone

Makes iscan available globally.

convergence_parameterrealNone

VMCON convergence parameter "sum"

pulse_variables

Variable nameTypeInitialDescription
bctmprealNone

first wall bulk coolant temperature (C)

dtstorrealNone

maximum allowable temperature change in stainless steel thermal storage block (K) (istore=3)

istoreintegerNone

Switch for thermal storage method:

  • =1 option 1 of Electrowatt report, AEA FUS 205
  • =2 option 2 of Electrowatt report, AEA FUS 205
  • =3 stainless steel block
itcyclintegerNone

Switch for first wall axial stress model:

  • =1 total axial constraint, no bending
  • =2 no axial constraint, no bending
  • =3 no axial constraint, bending
lpulseintegerNone

Switch for reactor model:

  • =0 continuous operation
  • =1 pulsed operation

sctfcoil_module

Variable nameTypeInitialDescription
tf_fit_trealNone

Dimensionless winding pack width

tf_fit_zrealNone

Dimensionless winding pack radial thickness

tf_fit_yrealNone

Ratio of peak field with ripple to nominal axisymmetric peak field

tfc_currentrealNone

Current in each TF coil

awpcrealNone

Total cross-sectional area of winding pack including GW insulation and insertion gap [m2]

awptfrealNone

Total cross-sectional area of winding pack without ground insulation and insertion gap [m2]

a_tf_steelrealNone

Inboard coil steel coil cross-sectional area [m2]

a_tf_insrealNone

Inboard coil insulation cross-section per coil [m2]

f_tf_steelrealNone

Inboard coil steel fraction [-]

f_tf_insrealNone

Inboard coil insulation fraction [-]

h_cp_toprealNone

Vertical distance from the midplane to the top of the tapered section [m]

r_tf_outboard_inrealNone

Radial position of plasma-facing edge of TF coil outboard leg [m]

r_tf_outboard_outrealNone

Radial position of outer edge of TF coil inboard leg [m]

r_wp_innerrealNone

Radial position of inner edge and centre of winding pack [m]

r_wp_outerrealNone

Radial position of outer edge and centre of winding pack [m]

r_wp_centrerealNone

Radial position of centre and centre of winding pack [m]

dr_tf_wp_toprealNone

Conductor layer radial thickness at centercollumn top [m] Ground insulation layer included, only defined for itart = 1

vol_ins_cprealNone

CP turn insulation volume [m3]

vol_gr_ins_cprealNone

CP ground insulation volume [m3]

vol_case_cprealNone

Volume of the CP outer casing cylinder

t_wp_toroidalrealNone

Minimal toroidal thickness of of winding pack [m]

t_wp_toroidal_avrealNone

Averaged toroidal thickness of of winding pack [m]

t_lat_case_avrealNone

Average lateral casing thickness [m]

a_case_frontrealNone

Front casing area [m2]

a_case_noserealNone

Nose casing area [m2]

a_ground_insrealNone

Inboard mid-plane cross-section area of the WP ground insulation [m2]

a_leg_insrealNone

TF ouboard leg turn insulation area per coil [m2]

a_leg_gr_insrealNone

TF outboard leg ground insulation area per coil [m2]

a_leg_condrealNone

Exact TF ouboard leg conductor area [m2]

theta_coilrealNone

Half toroidal angular extent of a single TF coil inboard leg

tan_theta_coilrealNone

Tan half toroidal angular extent of a single TF coil inboard leg

t_conductor_radialrealNone

Conductor area radial and toroidal dimension (integer turn only) [m]

t_conductor_toroidalrealNone

Conductor area radial and toroidal dimension (integer turn only) [m]

t_cable_radialrealNone

Cable area radial and toroidal dimension (integer turn only) [m]

t_cable_toroidalrealNone

Cable area radial and toroidal dimension (integer turn only) [m]

t_turn_radialrealNone

Turn radial and toroidal dimension (integer turn only) [m]

t_turn_toroidalrealNone

Turn radial and toroidal dimension (integer turn only) [m]

t_cablerealNone

Cable area averaged dimension (square shape) [m]

vforce_inboard_totrealNone

Total inboard vertical tension (all coils) [N]

vv_stress_quenchrealNone

The Tresca stress experienced by the Vacuum Vessel when the SCTF coil quenches [Pa]

coppertypeNone
hastelloytypeNone
soldertypeNone
jackettypeNone
heliumtypeNone
croco_strand_arearealNone
croco_strand_critical_currentrealNone
conductor_copper_arearealNone
conductor_copper_fractionrealNone
conductor_copper_bar_arearealNone
conductor_hastelloy_arearealNone
conductor_hastelloy_fractionrealNone
conductor_helium_arearealNone
conductor_helium_fractionrealNone
conductor_solder_arearealNone
conductor_solder_fractionrealNone
conductor_jacket_arearealNone
conductor_jacket_fractionrealNone
conductor_rebco_arearealNone
conductor_rebco_fractionrealNone
conductor_critical_currentrealNone
conductor_acsrealNone
conductor_arearealNone

Area of cable space inside jacket

T1realNone
time2realNone
tau2realNone
estotftrealNone
is_leg_cp_temp_sameintegerNone

ccfe_hcpb_module

Variable nameTypeInitialDescription
ipintegerNone
ofileintegerNone
armour_densityrealNone

FW armour density [kg/m3]

fw_densityrealNone

FW density [kg/m3]

blanket_densityrealNone

Blanket density [kg/m3]

shield_densityrealNone

Shield density [kg/m3]

vv_densityrealNone

Vacuum vessel density [kg/m3]

x_blanketrealNone

Blanket exponent (tonne/m2)

x_shieldrealNone

Shield exponent (tonne/m2)

tfc_nuc_heatingrealNone

Unit nuclear heating in TF coil (W per W of fusion power)

fw_armour_u_nuc_heatingrealNone

Unit heating of FW and armour in FW armour (W/kg per W of fusion power)

shld_u_nuc_heatingrealNone

Unit nuclear heating in shield (W per W of fusion power)

pnuc_tot_blk_sectorrealNone

Total nuclear power deposited in blanket covered sector (FW, BLKT, SHLD, TF) (MW)

exp_blanketrealNone

Exponential factors in nuclear heating calcs

exp_shield1realNone

Exponential factors in nuclear heating calcs

exp_shield2realNone

Exponential factors in nuclear heating calcs

rebco_variables

Variable nameTypeInitialDescription
rebco_thicknessrealNone

thickness of REBCO layer in tape (m) (iteration variable 138)

copper_thickrealNone

thickness of copper layer in tape (m) (iteration variable 139)

hastelloy_thicknessrealNone

thickness of Hastelloy layer in tape (m)

tape_widthrealNone

Mean width of tape (m)

tape_thicknessrealNone

thickness of tape, inc. all layers (hts, copper, substrate, etc.) (m)

croco_odrealNone

Outer diameter of CroCo strand (m)

croco_idrealNone

Inner diameter of CroCo copper tube (m)

croco_thickrealNone

Thickness of CroCo copper tube (m) (iteration variable 158)

copper_rrrrealNone

residual resistivity ratio copper in TF superconducting cable

copperA_m2realNone

TF coil current / copper area (A/m2)

coppera_m2_maxrealNone

Maximum TF coil current / copper area (A/m2)

f_coppera_m2realNone

f-value for constraint 75: TF coil current / copper area < copperA_m2_max

copperaoh_m2realNone

CS coil current / copper area (A/m2) (sweep variable 61)

copperaoh_m2_maxrealNone

Maximum CS coil current / copper area (A/m2)

f_copperaoh_m2realNone

f-value for constraint 88: CS coil current / copper area < copperA_m2_max

stack_thicknessrealNone
tapesrealNone
rebco_arearealNone
copper_arearealNone
hastelloy_arearealNone
solder_arearealNone
croco_arearealNone

blanket_library

Variable nameTypeInitialDescription
volshldirealNone

Volume of inboard and outboard shield (m3)

volshldorealNone

Volume of inboard and outboard shield (m3)

volvvirealNone

Volume of inboard and outboard Vacuum Vessel (m3)

volvvorealNone

Volume of inboard and outboard Vacuum Vessel (m3)

hcryopfrealNone

Clearance between uppermost PF coil and cryostat lid (m)

vfblktirealNone

Inboard/outboard void fraction of blanket

vfblktorealNone

Inboard/outboard void fraction of blanket

bldeptirealNone

Inboard/outboard blanket coolant channel length (radial direction) (m)

bldeptorealNone

Inboard/outboard blanket coolant channel length (radial direction) (m)

blwidtirealNone

Inboard/outboard blanket mid-plan toroidal circumference for segment (m)

blwidtorealNone

Inboard/outboard blanket mid-plan toroidal circumference for segment (m)

bllengirealNone

Inboard/outboard blanket segment poloidal length (m)

bllengorealNone

Inboard/outboard blanket segment poloidal length (m)

bzfllengirealNone

Inboard/outboard primary blanket flow lengths (m)

bzfllengorealNone

Inboard/outboard primary blanket flow lengths (m)

bzfllengi_liqrealNone

Inboard/outboard secondary blanket flow lengths (m)

bzfllengo_liqrealNone

Inboard/outboard secondary blanket flow lengths (m)

pnucfwirealNone

Inboard/outboard first wall nuclear heating (MW)

pnucfworealNone

Inboard/outboard first wall nuclear heating (MW)

tpeakfwirealNone

Inboard/outboard first wall peak temperature (K)

tpeakfworealNone

Inboard/outboard first wall peak temperature (K)

mffwirealNone

Inboard/outboard total mass flow rate to remove inboard FW power (kg/s)

mffworealNone

Inboard/outboard total mass flow rate to remove inboard FW power (kg/s)

mffwrealNone

Inboard/outboard total mass flow rate to remove inboard FW power (kg/s)

npfwirealNone

Inboard/utboard total number of pipes

npfworealNone

Inboard/utboard total number of pipes

mffwpirealNone

Inboard/outboard mass flow rate per coolant pipe (kg/s)

mffwporealNone

Inboard/outboard mass flow rate per coolant pipe (kg/s)

pnucblktirealNone

Neutron power deposited inboard/outboard blanket blanket (MW)

pnucblktorealNone

Neutron power deposited inboard/outboard blanket blanket (MW)

mfblktirealNone

Inboard/outboard blanket mass flow rate for coolant (kg/s)

mfblktorealNone

Inboard/outboard blanket mass flow rate for coolant (kg/s)

mfblktrealNone

Inboard/outboard blanket mass flow rate for coolant (kg/s)

mfblkti_liqrealNone

Inboard/outboard blanket mass flow rate for liquid breeder (kg/s)

mfblkto_liqrealNone

Inboard/outboard blanket mass flow rate for liquid breeder (kg/s)

mfblkt_liqrealNone

Inboard/outboard blanket mass flow rate for liquid breeder (kg/s)

mftotalrealNone

Total mass flow rate for coolant (kg/s)

npblktirealNone

Inboard/outboard total num of pipes

npblktorealNone

Inboard/outboard total num of pipes

mfblktpirealNone

Inboard/outboard mass flow rate per coolant pipe (kg/s)

mfblktporealNone

Inboard/outboard mass flow rate per coolant pipe (kg/s)

velblktirealNone

Inboard/outboard coolant velocity in blanket (m/s)

velblktorealNone

Inboard/outboard coolant velocity in blanket (m/s)

htpmw_fwirealNone

Inboard/outboard first wall pumping power (MW)

htpmw_fworealNone

Inboard/outboard first wall pumping power (MW)

htpmw_blktirealNone

Inboard/outboard blanket pumping power (MW)

htpmw_blktorealNone

Inboard/outboard blanket pumping power (MW)

htpmw_fw_blktirealNone

Inboard/outboard fw and blanket pumping power (MW)

htpmw_fw_blktorealNone

Inboard/outboard fw and blanket pumping power (MW)

hblnktrealNone

Blanket internal half-height (m)

hshldrealNone

Shield internal half-height (m)

hvvrealNone

Vacuum vessel internal half-height (m)

icomponentintegerNone

Switch used to specify selected component: blanket=0, shield=1, vacuum vessel=2

buildings_variables

Variable nameTypeInitialDescription
admvrealNone

administration building volume (m3)

admvolrealNone

volume of administration buildings (m3)

aux_build_lrealNone

aux building supporting tokamak processes length, width, height (m)

aux_build_wrealNone

aux building supporting tokamak processes length, width, height (m)

aux_build_hrealNone

aux building supporting tokamak processes length, width, height (m)

auxcool_lrealNone

Site-Wide Auxiliary Cooling Water facility length, width, height (m)

auxcool_wrealNone

Site-Wide Auxiliary Cooling Water facility length, width, height (m)

auxcool_hrealNone

Site-Wide Auxiliary Cooling Water facility length, width, height (m)

bioshld_thkrealNone

Radial thickness of bio-shield around reactor (m)

chemlab_lrealNone

Chemistry labs and treatment buldings length, width, height (m)

chemlab_wrealNone

Chemistry labs and treatment buldings length, width, height (m)

chemlab_hrealNone

Chemistry labs and treatment buldings length, width, height (m)

clh1realNone

vertical clearance from TF coil to cryostat (m) (calculated for tokamaks)

clh2realNone

clearance beneath TF coil to foundation (including basement) (m)

control_buildings_lrealNone

control building length, width, height (m)

control_buildings_wrealNone

control building length, width, height (m)

control_buildings_hrealNone

control building length, width, height (m)

convrealNone

control building volume (m3)

convolrealNone

volume of control, protection and i&c building (m3)

crane_arm_hrealNone

vertical dimension of crane arm, operating over reactor (m)

crane_clrnc_hrealNone

horizontal clearance to building wall for crane operation (m)

crane_clrnc_vrealNone

vertical clearance for crane operation (m)

cryomag_lrealNone

Cryogenic Buildings for Magnet and Fuel Cycle length, width, height (m)

cryomag_wrealNone

Cryogenic Buildings for Magnet and Fuel Cycle length, width, height (m)

cryomag_hrealNone

Cryogenic Buildings for Magnet and Fuel Cycle length, width, height (m)

cryostore_lrealNone

Magnet Cryo Storage Tanks length, width, height (m)

cryostore_wrealNone

Magnet Cryo Storage Tanks length, width, height (m)

cryostore_hrealNone

Magnet Cryo Storage Tanks length, width, height (m)

cryostat_clrncrealNone

vertical clearance from TF coil to cryostat (m)

cryvolrealNone

volume of cryoplant building (m3)

efloorrealNone

effective total floor space (m2)

elecdist_lrealNone

Transformers and electrical distribution facilities length, width, height (m)

elecdist_wrealNone

Transformers and electrical distribution facilities length, width, height (m)

elecdist_hrealNone

Transformers and electrical distribution facilities length, width, height (m)

elecload_lrealNone

Electric (eesential and non-essential) load centres length, width, height (m)

elecload_wrealNone

Electric (eesential and non-essential) load centres length, width, height (m)

elecload_hrealNone

Electric (eesential and non-essential) load centres length, width, height (m)

elecstore_lrealNone

Energy Storage facilities length, width, height (m)

elecstore_wrealNone

Energy Storage facilities length, width, height (m)

elecstore_hrealNone

Energy Storage facilities length, width, height (m)

elevolrealNone

volume of electrical equipment building (m3)

esbldgm3realNone

volume of energy storage equipment building (m3) (not used if lpulse=0)

fc_building_lrealNone

Fuel Cycle facilities length, width (m)

fc_building_wrealNone

Fuel Cycle facilities length, width (m)

fndtrealNone

foundation thickness (m)

gas_buildings_lrealNone

air & gas supply (amalgamated) buildings length, width, height (m)

gas_buildings_wrealNone

air & gas supply (amalgamated) buildings length, width, height (m)

gas_buildings_hrealNone

air & gas supply (amalgamated) buildings length, width, height (m)

ground_clrncrealNone

clearance beneath TF coil (m)

hcd_building_lrealNone

HCD building length, width, height (m)

hcd_building_wrealNone

HCD building length, width, height (m)

hcd_building_hrealNone

HCD building length, width, height (m)

hcclrealNone

clearance around components in hot cell (m)

hcwtrealNone

hot cell wall thickness (m)

heat_sink_lrealNone

heat sinks length, width, height (m)

heat_sink_wrealNone

heat sinks length, width, height (m)

heat_sink_hrealNone

heat sinks length, width, height (m)

hot_sepdistrealNone

hot cell storage component separation distance (m)

hotcell_hrealNone

hot cell storage and maintenance facility height (m)

hw_storage_lrealNone

hazardous waste storage building length, width, height (m)

hw_storage_wrealNone

hazardous waste storage building length, width, height (m)

hw_storage_hrealNone

hazardous waste storage building length, width, height (m)

i_bldgs_sizeintegerNone

switch between routines estimating building sizes (0 = default; 1 = updated)

i_bldgs_vintegerNone

switch to select verbose output for buildings (1 = verbose)

ilw_smelter_lrealNone

radioactive waste smelting facility length, width, height (m)

ilw_smelter_wrealNone

radioactive waste smelting facility length, width, height (m)

ilw_smelter_hrealNone

radioactive waste smelting facility length, width, height (m)

ilw_storage_lrealNone

ILW waste storage building length, width, height (m)

ilw_storage_wrealNone

ILW waste storage building length, width, height (m)

ilw_storage_hrealNone

ILW waste storage building length, width, height (m)

llw_storage_lrealNone

LLW waste storage building length, width, height (m)

llw_storage_wrealNone

LLW waste storage building length, width, height (m)

llw_storage_hrealNone

LLW waste storage building length, width, height (m)

magnet_pulse_lrealNone

pulsed magnet power building length, width, height (m)

magnet_pulse_wrealNone

pulsed magnet power building length, width, height (m)

magnet_pulse_hrealNone

pulsed magnet power building length, width, height (m)

magnet_trains_lrealNone

steady state magnet power trains building length, width, height (m)

magnet_trains_wrealNone

steady state magnet power trains building length, width, height (m)

magnet_trains_hrealNone

steady state magnet power trains building length, width, height (m)

maint_cont_lrealNone

maintenance control building length, width, height (m)

maint_cont_wrealNone

maintenance control building length, width, height (m)

maint_cont_hrealNone

maintenance control building length, width, height (m)

mbvfacrealNone

maintenance building volume multiplication factor

nbi_sys_lrealNone

NBI system length, width (m)

nbi_sys_wrealNone

NBI system length, width (m)

pfbldgm3realNone

volume of PF coil power supply building (m3)

pibvrealNone

power injection building volume (m3)

qnty_sfty_facrealNone

quantity safety factor for component use during plant lifetime

rbvfacrealNone

reactor building volume multiplication factor

rbrtrealNone

reactor building roof thickness (m)

rbvolrealNone

reactor building volume (m3)

rbwtrealNone

reactor building wall thickness (m)

reactor_clrncrealNone

clearance around reactor (m)

reactor_fndtn_thkrealNone

reactor building foundation thickness (m)

reactor_hall_lrealNone

reactor building length, width, height (m)

reactor_hall_wrealNone

reactor building length, width, height (m)

reactor_hall_hrealNone

reactor building length, width, height (m)

reactor_roof_thkrealNone

reactor building roof thickness (m)

reactor_wall_thkrealNone

reactor building wall thickness (m)

rmbvolrealNone

volume of maintenance and assembly building (m3)

robotics_lrealNone

robotics buildings length, width, height (m)

robotics_wrealNone

robotics buildings length, width, height (m)

robotics_hrealNone

robotics buildings length, width, height (m)

rowrealNone

clearance to building wall for crane operation (m)

rxclrealNone

clearance around reactor (m)

sec_buildings_lrealNone

security & safety buildings length, width, height (m)

sec_buildings_wrealNone

security & safety buildings length, width, height (m)

sec_buildings_hrealNone

security & safety buildings length, width, height (m)

shmfrealNone

fraction of shield mass per TF coil to be moved in the maximum shield lift

shovrealNone

shops and warehouse volume (m3)

shovolrealNone

volume of shops and buildings for plant auxiliaries (m3)

staff_buildings_arearealNone

footprint of staff buildings (m2)

staff_buildings_hrealNone

staff buildings height (m)

stclrealNone

clearance above crane to roof (m)

tfcbvrealNone

volume of TF coil power supply building (m3) (calculated if TF coils are superconducting)

transp_clrncrealNone

transportation clearance between components (m)

trclrealNone

transportation clearance between components (m)

trivrealNone

volume of tritium, fuel handling and health physics buildings (m3)

turbine_hall_lrealNone

turbine hall length, width, height (m)

turbine_hall_wrealNone

turbine hall length, width, height (m)

turbine_hall_hrealNone

turbine hall length, width, height (m)

tw_storage_lrealNone

tritiated waste storage building length, width, height (m)

tw_storage_wrealNone

tritiated waste storage building length, width, height (m)

tw_storage_hrealNone

tritiated waste storage building length, width, height (m)

volrcirealNone

internal volume of reactor building (m3)

volnucbrealNone

sum of nuclear buildings volumes (m3)

warm_shop_lrealNone

warm shop length, width, height (m)

warm_shop_wrealNone

warm shop length, width, height (m)

warm_shop_hrealNone

warm shop length, width, height (m)

water_buildings_lrealNone

water, laundry & drainage buildings length, width, height (m)

water_buildings_wrealNone

water, laundry & drainage buildings length, width, height (m)

water_buildings_hrealNone

water, laundry & drainage buildings length, width, height (m)

wgtrealNone

reactor building crane capacity (kg) (calculated if 0 is input)

wgt2realNone

hot cell crane capacity (kg) (calculated if 0 is input)

workshop_lrealNone

[cold] workshop buildings length, width, height (m)

workshop_wrealNone

[cold] workshop buildings length, width, height (m)

workshop_hrealNone

[cold] workshop buildings length, width, height (m)

wrbirealNone

distance from centre of machine to building wall (m)

wsvolrealNone

volume of warm shop building (m3)

wsvfacrealNone

warm shop building volume multiplication factor

a_reactor_bldgrealNone

Floor area of reactor building in m^2

a_ee_ps_bldgrealNone

Floor area of electrical equipment and power supply building in m^2

a_aux_services_bldgrealNone

Floor area of auxiliary services building in m^2

a_hot_cell_bldgrealNone

Floor area of hot cell building in m^2

a_reactor_service_bldgrealNone

Floor area of reactor service building in m^2

a_service_water_bldgrealNone

Floor area of service water building in m^2

a_fuel_handling_bldgrealNone

Floor area of fuel handling and storage building in m^2

a_control_room_bldgrealNone

Floor area of controlroom building in m^2

a_ac_ps_bldgrealNone

Floor area of AC power supply building in m^2

a_admin_bldgrealNone

Floor area of admin building in m^2

a_site_service_bldgrealNone

Floor area of site service building in m^2

a_cryo_inert_gas_bldgrealNone

Floor area of cryogenics and inert gas storage building in m^2

a_security_bldgrealNone

Floor area of security building in m^2

pfcoil_module

Variable nameTypeInitialDescription
nefintegerNone
nfxfintegerNone
ricpfrealNone
ssq0realNone
sig_axialrealNone
sig_hooprealNone
axial_forcerealNone
rfxfrealNone
zfxfrealNone
cfxfrealNone
xindrealNone
rclsrealNone
zclsrealNone
cclsrealNone
ccl0realNone
bpf2realNone
vsdumrealNone
first_calllogicalNone
CSlimitlogicalNone
conductorpftypeNone
croco_strandtypeNone

ife_variables

Variable nameTypeInitialDescription
maxmatinteger8

Total number of materials in IFE device. Material numbers are as follows:

  • =0 void
  • =1 steel
  • =2 carbon cloth
  • =3 FLiBe
  • =4 lithium oxide Li2O
  • =5 concrete
  • =6 helium
  • =7 xenon
  • =8 lithium
bldrrealNone

radial thickness of IFE blanket (m; calculated if ifetyp=4)

bldrcrealNone

radial thickness of IFE curtain (m; ifetyp=4)

bldzlrealNone

vertical thickness of IFE blanket below chamber (m)

bldzurealNone

vertical thickness of IFE blanket above chamber (m)

blmatfrealNone

IFE blanket material fractions

blmatmrealNone

IFE blanket material masses (kg)

blmatvrealNone

IFE blanket material volumes (m3)

blvolrealNone

IFE blanket volume (m3)

cdriv0realNone

IFE generic/laser driver cost at edrive=0 (M$)

cdriv1realNone

IFE low energy heavy ion beam driver cost extrapolated to edrive=0 (M$)

cdriv2realNone

IFE high energy heavy ion beam driver cost extrapolated to edrive=0 (M$)

cdriv3realNone

IFE driver cost ($/J wall plug) (ifedrv==3)

chdzlrealNone

vertical thickness of IFE chamber below centre (m)

chdzurealNone

vertical thickness of IFE chamber above centre (m)

chmatfrealNone

IFE chamber material fractions

chmatmrealNone

IFE chamber material masses (kg)

chmatvrealNone

IFE chamber material volumes (m3)

chradrealNone

radius of IFE chamber (m) (iteration variable 84)

chvolrealNone

IFE chamber volume (m3)

dcdrv0realNone

IFE generic/laser driver cost gradient (M$/MJ)

dcdrv1realNone

HIB driver cost gradient at low energy (M$/MJ)

dcdrv2realNone

HIB driver cost gradient at high energy (M$/MJ)

drveffrealNone

IFE driver wall plug to target efficiency (ifedrv=0,3) (iteration variable 82)

edriverealNone

IFE driver energy (J) (iteration variable 81)

etadrvrealNone

IFE driver wall plug to target efficiency

etalirealNone

IFE lithium pump wall plug efficiency (ifetyp=4)

etaverealNone

IFE driver efficiency vs driver energy (ifedrv=-1)

fauxboprealNone

fraction of gross electric power to balance-of-plant (IFE)

fbreedrealNone

fraction of breeder external to device core

fburnrealNone

IFE burn fraction (fraction of tritium fused/target)

fliradrealNone

radius of FLiBe/lithium inlet (m) (ifetyp=3,4)

frrmaxrealNone

f-value for maximum IFE repetition rate (constraint equation 50, iteration variable 86)

fwdrrealNone

radial thickness of IFE first wall (m)

fwdzlrealNone

vertical thickness of IFE first wall below chamber (m)

fwdzurealNone

vertical thickness of IFE first wall above chamber (m)

fwmatfrealNone

IFE first wall material fractions

fwmatmrealNone

IFE first wall material masses (kg)

fwmatvrealNone

IFE first wall material volumes (kg)

fwvolrealNone

IFE first wall volume (m3)

gainrealNone

IFE target gain

gainverealNone

IFE target gain vs driver energy (ifedrv=-1)

htpmw_iferealNone

IFE heat transport system electrical pump power (MW)

ifeintegerNone

Switch for IFE option:

  • =0 use tokamak, RFP or stellarator model
  • =1 use IFE model
ifedrvintegerNone

Switch for type of IFE driver:

  • =-1 use gainve, etave for gain and driver efficiency
  • =0 use tgain, drveff for gain and driver efficiency
  • =1 use laser driver based on SOMBRERO design
  • =2 use heavy ion beam driver based on OSIRIS
  • =3 Input pfusife, rrin and drveff
ifetypintegerNone

Switch for type of IFE device build:

  • =0 generic (cylindrical) build
  • =1 OSIRIS-like build
  • =2 SOMBRERO-like build
  • =3 HYLIFE-II-like build
  • =4 2019 build
lipmwrealNone

IFE lithium pump power (MW; ifetyp=4)

mcdrivrealNone

IFE driver cost multiplier

mfliberealNone

total mass of FLiBe (kg)

pdriverealNone

IFE driver power reaching target (W) (iteration variable 85)

pfusiferealNone

IFE input fusion power (MW) (ifedrv=3 only; itv 155)

pifecrrealNone

IFE cryogenic power requirements (MW)

ptargfrealNone

IFE target factory power at 6 Hz repetition rate (MW)

r1realNone

IFE device radial build (m)

r2realNone

IFE device radial build (m)

r3realNone

IFE device radial build (m)

r4realNone

IFE device radial build (m)

r5realNone

IFE device radial build (m)

r6realNone

IFE device radial build (m)

r7realNone

IFE device radial build (m)

repratrealNone

IFE driver repetition rate (Hz)

rrinrealNone

Input IFE repetition rate (Hz) (ifedrv=3 only; itv 156)

rrmaxrealNone

maximum IFE repetition rate (Hz)

shdrrealNone

radial thickness of IFE shield (m)

shdzlrealNone

vertical thickness of IFE shield below chamber (m)

shdzurealNone

vertical thickness of IFE shield above chamber (m)

shmatfrealNone

IFE shield material fractions

shmatmrealNone

IFE shield material masses (kg)

shmatvrealNone

IFE shield material volumes (kg)

shvolrealNone

IFE shield volume (m3)

sombdrrealNone

radius of cylindrical blanket section below chamber (ifetyp=2)

somtdrrealNone

radius of cylindrical blanket section above chamber (ifetyp=2)

taufallrealNone

Lithium Fall Time (s)

tdspmwrealNone

IFE target delivery system power (MW)

tfacmwrealNone

IFE target factory power (MW)

tgainrealNone

IFE target gain (if ifedrv = 0) (iteration variable 83)

uccarbrealNone

cost of carbon cloth ($/kg)

ucconcrealNone

cost of concrete ($/kg)

ucflibrealNone

cost of FLiBe ($/kg)

uctargrealNone

cost of IFE target ($/target)

v1drrealNone

radial thickness of IFE void between first wall and blanket (m)

v1dzlrealNone

vertical thickness of IFE void 1 below chamber (m)

v1dzurealNone

vertical thickness of IFE void 1 above chamber (m)

v1matfrealNone

IFE void 1 material fractions

v1matmrealNone

IFE void 1 material masses (kg)

v1matvrealNone

IFE void 1 material volumes (kg)

v1volrealNone

IFE void 1 volume (m3)

v2drrealNone

radial thickness of IFE void between blanket and shield (m)

v2dzlrealNone

vertical thickness of IFE void 2 below chamber (m)

v2dzurealNone

vertical thickness of IFE void 2 above chamber (m)

v2matfrealNone

IFE void 2 material fractions

v2matmrealNone

IFE void 2 material masses (kg)

v2matvrealNone

IFE void 2 material volumes (kg)

v2volrealNone

IFE void 2 volume (m3)

v3drrealNone

radial thickness of IFE void outside shield (m)

v3dzlrealNone

vertical thickness of IFE void 3 below chamber (m)

v3dzurealNone

vertical thickness of IFE void 3 above chamber (m)

v3matfrealNone

IFE void 3 material fractions

v3matmrealNone

IFE void 3 material masses (kg)

v3matvrealNone

IFE void 3 material volumes (kg)

v3volrealNone

IFE void 3 volume (m3)

zl1realNone

IFE vertical build below centre (m)

zl2realNone

IFE vertical build below centre (m)

zl3realNone

IFE vertical build below centre (m)

zl4realNone

IFE vertical build below centre (m)

zl5realNone

IFE vertical build below centre (m)

zl6realNone

IFE vertical build below centre (m)

zl7realNone

IFE vertical build below centre (m)

zu1realNone

IFE vertical build above centre (m)

zu2realNone

IFE vertical build above centre (m)

zu3realNone

IFE vertical build above centre (m)

zu4realNone

IFE vertical build above centre (m)

zu5realNone

IFE vertical build above centre (m)

zu6realNone

IFE vertical build above centre (m)

zu7realNone

IFE vertical build above centre (m)

impurity_radiation_module

Variable nameTypeInitialDescription
nimpinteger14

nimp /14/ FIX : number of ion species in impurity radiation model

coreradiusrealNone

coreradius /0.6/ : normalised radius defining the 'core' region

coreradiationfractionrealNone

coreradiationfraction /1.0/ : fraction of radiation from 'core' region that is subtracted from the loss power

fimp(nimp) /1.0,0.1,0.02,0.0,0.0,0.0,0.0,0.0,0.0016,0.0,0.0,0.0,0.0,0.0/ : impurity number density fractions relative to electron density

fimprealNone
imp_labelcharacterNone

imp_label(nimp) : impurity ion species names:

  • ( 1) Hydrogen (fraction calculated by code)
  • ( 2) Helium
  • ( 3) Beryllium
  • ( 4) Carbon
  • ( 5) Nitrogen
  • ( 6) Oxygen
  • ( 7) Neon
  • ( 8) Silicon
  • ( 9) Argon
  • (10) Iron
  • (11) Nickel
  • (12) Krypton
  • (13) Xenon
  • (14) Tungsten

all_array_hotfix_leninteger200
impurity_arr_LabelcharacterNone
impurity_arr_ZintegerNone
impurity_arr_amassrealNone
impurity_arr_fracrealNone
impurity_arr_len_tabintegerNone
impurity_arr_Temp_keVrealNone
impurity_arr_Lz_Wm3realNone
impurity_arr_ZavrealNone
toolowlogicalNone

Used for reporting error in function pimpden

physics_module

Variable nameTypeInitialDescription
isczintegerNone
err242integerNone
err243integerNone
rad_fraction_LCFSrealNone
total_plasma_internal_energyrealNone
total_loss_powerrealNone
total_energy_conf_timerealNone
ptarmwrealNone
lambdaiorealNone
drseprealNone
fiorealNone
fLIrealNone
fLOrealNone
fUIrealNone
fUOrealNone
pLImwrealNone
pLOmwrealNone
pUImwrealNone
pUOmwrealNone
rho_starrealNone
nu_starrealNone
beta_mcdonaldrealNone
itart_rrealNone
first_callintegerNone

build_variables

Variable nameTypeInitialDescription
aplasminrealNone

minimum minor radius (m)

available_radial_spacerealNone

Minimal radial space between plasma and coils (m)

blarearealNone

blanket total surface area (m2)

blareaibrealNone

inboard blanket surface area (m2)

blareaobrealNone

outboard blanket surface area (m2)

blbmithrealNone

inboard blanket box manifold thickness (m) (blktmodel>0)

blbmothrealNone

outboard blanket box manifold thickness (m) (blktmodel>0)

blbpithrealNone

inboard blanket base plate thickness (m) (blktmodel>0)

blbpothrealNone

outboard blanket base plate thickness (m) (blktmodel>0)

blbuithrealNone

inboard blanket breeding zone thickness (m) (blktmodel>0) (iteration variable 90)

blbuothrealNone

outboard blanket breeding zone thickness (m) (blktmodel>0) (iteration variable 91)

blnkithrealNone

inboard blanket thickness (m); (calculated if blktmodel>0) (=0.0 if iblnkith=0)

blnkothrealNone

outboard blanket thickness (m); calculated if blktmodel>0

blnktthrealNone

top blanket thickness (m), = mean of inboard and outboard blanket thicknesses

borerealNone

central solenoid inboard radius (m) (iteration variable 29)

clhsfrealNone

cryostat lid height scaling factor (tokamaks)

ddwexrealNone

cryostat thickness (m)

d_vv_inrealNone

vacuum vessel inboard thickness (TF coil / shield) (m)

d_vv_outrealNone

vacuum vessel outboard thickness (TF coil / shield) (m)

d_vv_toprealNone

vacuum vessel topside thickness (TF coil / shield) (m) (= d_vv_bot if double-null)

d_vv_botrealNone

vacuum vessel underside thickness (TF coil / shield) (m)

f_avspacerealNone

F-value for stellarator radial space check (constraint equation 83)

fcspcrealNone

Fraction of space occupied by CS pre-compression structure

fseppcrealNone

Separation force in CS coil pre-compression structure

fwarearealNone

first wall total surface area (m2)

fwareaibrealNone

inboard first wall surface area (m2)

fwareaobrealNone

outboard first wall surface area (m2)

fwithrealNone

inboard first wall thickness, initial estimate as calculated (m)

fwothrealNone

outboard first wall thickness, initial estimate as calculated (m)

gapdsrealNone

gap between inboard vacuum vessel and thermal shield (m) (iteration variable 61)

gapohrealNone

gap between central solenoid and TF coil (m) (iteration variable 42)

gapominrealNone

minimum gap between outboard vacuum vessel and TF coil (m) (iteration variable 31)

gapstorealNone

gap between outboard vacuum vessel and TF coil (m)

hmaxrealNone

maximum (half-)height of TF coil (inside edge) (m)

hpfdifrealNone

difference in distance from midplane of upper and lower portions of TF legs (non-zero for single-null devices) (m)

hpfurealNone

height to top of (upper) TF coil leg (m)

hr1realNone

half-height of TF coil inboard leg straight section (m)

iohclintegerNone

Switch for existence of central solenoid:

  • =0 central solenoid not present
  • =1 central solenoid exists
iprecompintegerNone

Switch for existence of central solenoid pre-compression structure:

  • =0 no pre-compression structure
  • =1 calculated pre-compression structure
tf_in_csintegerNone

Switch for placing the TF coil inside the CS

  • = 0 TF coil is outside the CS (default)
  • = 1 TF coil is inside the CS
ohcthrealNone

Central solenoid thickness (m) (iteration variable 16)

precomprealNone

CS coil precompression structure thickness (m)

rbldrealNone

sum of thicknesses to the major radius (m)

required_radial_spacerealNone

Required space between coil and plasma for blanket shield wall etc (m)

rinboardrealNone

plasma inboard radius (m) (consistency equation 29)

rsldirealNone

radius to inboard shield (inside point) (m)

rsldorealNone

radius to outboard shield (outside point) (m)

r_vv_inboard_outrealNone

Radial plasma facing side position of inboard vacuum vessel [m]

r_sh_inboard_inrealNone

Radial inner side position of inboard neutronic shield [m]

r_sh_inboard_outrealNone

Radial plasma facing side position of inboard neutronic shield [m]

r_tf_inboard_inrealNone

Mid-plane inboard TF coil leg radius at the centre-machine side [m]

r_tf_inboard_midrealNone

Mid-plane inboard TF coil leg radius at middle of the coil [m]

r_tf_inboard_outrealNone

Mid-plane inboard TF coil leg radius at the plasma side [m]

r_tf_outboard_midrealNone

Mid-plane outboard TF coil leg radius at the middle of the coil [m]

i_r_cp_topintegerNone

Switch selecting the he parametrization of the outer radius of the top of the CP part of the TF coil 0 : r_cp_top is set by the plasma shape 1 : r_cp_top is a user input 2 : r_cp_top is set using the CP top and midplane CP radius ratio

r_cp_toprealNone

Top outer radius of the centropost (ST only) (m)

f_r_cprealNone

Ratio between the top and the midplane TF CP outer radius [-] Not used by default (-1) must be larger than 1 otherwise

dr_tf_inner_borerealNone

TF coil horizontal inner bore (m)

dh_tf_inner_borerealNone

TF coil vertical inner bore (m)

scraplirealNone

Gap between plasma and first wall, inboard side (m) (if iscrp=1) Iteration variable: ixc = 73 Scan variable: nsweep = 58

scraplorealNone

Gap between plasma and first wall, outboard side (m) (if iscrp=1) Iteration variable: ixc = 74 Scan variable: nsweep = 59

sharearealNone

shield total surface area (m2)

shareaibrealNone

inboard shield surface area (m2)

shareaobrealNone

outboard shield surface area (m2)

shldithrealNone

inboard shield thickness (m) (iteration variable 93)

shldlthrealNone

lower (under divertor) shield thickness (m)

shldothrealNone

outboard shield thickness (m) (iteration variable 94)

shldtthrealNone

upper/lower shield thickness (m); calculated if blktmodel > 0 (= shldlth if double-null)

sigallpcrealNone

allowable stress in CSpre-compression structure (Pa)

tfcthrealNone

inboard TF coil thickness, (centrepost for ST) (m) (input, calculated or iteration variable 13)

tfoffsetrealNone

vertical distance between centre of TF coils and centre of plasma (m)

tfootfirealNone

TF coil outboard leg / inboard leg radial thickness ratio (i_tf_sup=0 only) (iteration variable 75)

tfthkorealNone

Outboard TF coil thickness (m)

tftsgaprealNone

Minimum metal-to-metal gap between TF coil and thermal shield (m)

thshield_ibrealNone

TF-VV thermal shield thickness, inboard (m)

thshield_obrealNone

TF-VV thermal shield thickness, outboard (m)

thshield_vbrealNone

TF-VV thermal shield thickness, vertical build (m)

vgap2realNone

vertical gap between vacuum vessel and thermal shields (m)

vgaprealNone

vertical gap between x-point and divertor (m) (if = 0, it is calculated)

vgaptoprealNone

vertical gap between top of plasma and first wall (m) (= vgap if double-null)

vvblgaprealNone

gap between vacuum vessel and blanket (m)

pllenirealNone

length of inboard divertor plate (m)

pllenorealNone

length of outboard divertor plate (m)

plsepirealNone

poloidal length, x-point to inboard strike point (m)

plseporealNone

poloidal length, x-point to outboard strike point (m)

rsporealNone

outboard strike point radius (m)

water_usage_variables

Variable nameTypeInitialDescription
airtemprealNone

ambient air temperature (degrees Celsius)

watertemprealNone

water temperature (degrees Celsius)

windspeedrealNone

wind speed (m/s)

waterdensrealNone

density of water (kg/m3) for simplicity, set to static value applicable to water at 21 degC

latentheatrealNone

latent heat of vaporization (J/kg) for simplicity, set to static value applicable at 1 atm (100 kPa) air pressure

volheatrealNone

volumetric heat of vaporization (J/m3)

evapratiorealNone

evaporation ratio: ratio of the heat used to evaporate water to the total heat discharged through the tower

evapvolrealNone

evaporated volume of water (m3)

energypervolrealNone

input waste (heat) energy cooled per evaporated volume (J/m3)

volperenergyrealNone

volume evaporated by units of heat energy (m3/MJ)

waterusetowerrealNone

total volume of water used in cooling tower (m3)

wateruserecircrealNone

total volume of water used in recirculating system (m3)

wateruseonethrurealNone

total volume of water used in once-through system (m3)

fson_string_m

Variable nameTypeInitialDescription
BLOCK_SIZEinteger32

fson_value_m

Variable nameTypeInitialDescription
TYPE_UNKNOWNinteger-1
TYPE_NULLinteger0
TYPE_OBJECTinteger1
TYPE_ARRAYinteger2
TYPE_STRINGinteger3
TYPE_INTEGERinteger4
TYPE_REALinteger5
TYPE_LOGICALinteger6

fson_library

Variable nameTypeInitialDescription
end_of_fileinteger-1
end_of_recordinteger-2
STATE_LOOKING_FOR_VALUEinteger1
STATE_IN_OBJECTinteger2
STATE_IN_PAIR_NAMEinteger3
STATE_IN_PAIR_VALUEinteger4
pushed_indexintegerNone
pushed_charcharacterNone

physics_functions_module

Variable nameTypeInitialDescription
vcritxrealNone

fwbs_variables

Variable nameTypeInitialDescription
bktliferealNone

Full power blanket lifetime (years)

coolmassrealNone

mass of water coolant (in shield, blanket, first wall, divertor) [kg]

vvmassrealNone

vacuum vessel mass [kg]

denstlrealNone

density of steel [kg m^-3]

denwrealNone

density of tungsten [kg m^-3]

denwcrealNone

density of tungsten carbide [kg m^-3]

dewmkgrealNone

total mass of vacuum vessel + cryostat [kg] (calculated if blktmodel>0)

emultrealNone

energy multiplication in blanket and shield

emultmwrealNone

power due to energy multiplication in blanket and shield [MW]

fblssrealNone

KIT blanket model: steel fraction of breeding zone

fdivrealNone

Solid angle fraction taken by one divertor

fhcdrealNone

area fraction covered by heating/current drive apparatus plus diagnostics

fholerealNone

area fraction taken up by other holes (IFE)

fwbsshapeintegerNone

switch for first wall, blanket, shield and vacuum vessel shape:

  • =1 D-shaped (cylinder inboard + ellipse outboard)
  • =2 defined by two ellipses
fwliferealNone

first wall full-power year lifetime (y)

fwmassrealNone

first wall mass [kg]

fw_armour_massrealNone

first wall armour mass [kg]

fw_armour_thicknessrealNone

first wall armour thickness [m]

fw_armour_volrealNone

first wall armour volume [m^3]

iblanketintegerNone

switch for blanket model:

  • =1 CCFE HCPB model
  • =2 KIT HCPB model # REMOVED, no longer usable
  • =3 CCFE HCPB model with Tritium Breeding Ratio calculation
  • =4 KIT HCLL model # REMOVED, no longer usable
  • =5 DCLL model - no nutronics model included (in development) please check/choose values for 'dual-coolant blanket' fractions (provided in this file). - please use primary_pumping = 0 or 1.
iblnkithintegerNone

switch for inboard blanket:

  • =0 No inboard blanket (blnkith=0.0)
  • =1 Inboard blanket present
inuclearintegerNone

switch for nuclear heating in the coils:

  • =0 Frances Fox model (default)
  • =1 Fixed by user (qnuc)
qnucrealNone

nuclear heating in the coils (W) (inuclear=1)

li6enrichrealNone

lithium-6 enrichment of breeding material (%)

pnucblktrealNone

nuclear heating in the blanket [MW]

pnuc_cprealNone

Total nuclear heating in the ST centrepost [MW]

pnuc_cp_shrealNone

Neutronic shield nuclear heating in the ST centrepost [MW]

pnuc_cp_tfrealNone

TF neutronic nuclear heating in the ST centrepost [MW]

pnucdivrealNone

nuclear heating in the divertor [MW]

pnucfwrealNone

nuclear heating in the first wall [MW]

pnuchcdrealNone

nuclear heating in the HCD apparatus and diagnostics [MW]

pnuclossrealNone

nuclear heating lost via holes [MW]

pnucvvplusrealNone

nuclear heating to vacuum vessel and beyond [MW]

pnucshldrealNone

nuclear heating in the shield [MW]

whtblktrealNone

mass of blanket [kg]

whtblssrealNone

mass of blanket - steel part [kg]

armour_fw_bl_massrealNone

Total mass of armour, first wall and blanket [kg]

breeder_frealNone

Volume ratio: Li4SiO4/(Be12Ti+Li4SiO4) (iteration variable 108)

breeder_multiplierrealNone

combined breeder/multipler fraction of blanket by volume

vfcblktrealNone

He coolant fraction of blanket by volume (iblanket= 1,3 (CCFE HCPB))

vfpblktrealNone

He purge gas fraction of blanket by volume (iblanket= 1,3 (CCFE HCPB))

whtblli4sio4realNone

mass of lithium orthosilicate in blanket [kg] (iblanket=1,3 (CCFE HCPB))

whtbltibe12realNone

mass of titanium beryllide in blanket [kg] (iblanket=1,3 (CCFE HCPB))

neut_flux_cprealNone

Centrepost TF fast neutron flux (E > 0.1 MeV) [m^(-2).^(-1)] This variable is only calculated for superconducting (i_tf_sup = 1 ) spherical tokamal magnet designs (itart = 0)

f_neut_shieldrealNone

Fraction of nuclear power shielded before the CP magnet (ST) ( neut_absorb = -1 --> a fit on simplified MCNP neutronic calculation is used assuming water cooled (13%) tungesten carbyde )

vffwirealNone

Inboard/outboard FW coolant void fraction

vffworealNone

Inboard/outboard FW coolant void fraction

psurffwirealNone

Surface heat flux on first wall [MW] (sum = pradfw)

psurffworealNone

Surface heat flux on first wall [MW] (sum = pradfw)

volfwrealNone

First wall volume [m3]

fblss_ccferealNone

Fractions of blanket by volume: steel, lithium orthosilicate, titanium beryllide

fblli2sio4realNone

Fractions of blanket by volume: steel, lithium orthosilicate, titanium beryllide

fbltibe12realNone

Fractions of blanket by volume: steel, lithium orthosilicate, titanium beryllide

breedmatintegerNone

breeder material switch (iblanket=2 (KIT HCPB)):

  • =1 Lithium orthosilicate
  • =2 Lithium methatitanate
  • =3 Lithium zirconate
densbreedrealNone

density of breeder material [kg m^-3] (iblanket=2 (KIT HCPB))

fblberealNone

beryllium fraction of blanket by volume (if iblanket=2, is Be fraction of breeding zone)

fblbreedrealNone

breeder fraction of blanket breeding zone by volume (iblanket=2 (KIT HCPB))

fblhebmirealNone

helium fraction of inboard blanket box manifold by volume (iblanket=2 (KIT HCPB))

fblhebmorealNone

helium fraction of outboard blanket box manifold by volume (iblanket=2 (KIT HCPB))

fblhebpirealNone

helium fraction of inboard blanket back plate by volume (iblanket=2 (KIT HCPB))

fblhebporealNone

helium fraction of outboard blanket back plate by volume (iblanket=2 (KIT HCPB))

hcdportsizeintegerNone

switch for size of heating/current drive ports (iblanket=2 (KIT HCPB)):

  • =1 'small'
  • =2 'large'
nflutfrealNone

peak fast neutron fluence on TF coil superconductor [n m^-2] (iblanket=2 (KIT HCPB))

npdivintegerNone

number of divertor ports (iblanket=2 (KIT HCPB))

nphcdinintegerNone

number of inboard ports for heating/current drive (iblanket=2 (KIT HCPB))

nphcdoutintegerNone

number of outboard ports for heating/current drive (iblanket=2 (KIT HCPB))

tbrrealNone

tritium breeding ratio (iblanket=2,3 (KIT HCPB/HCLL))

tritpraterealNone

tritium production rate [g day^-1] (iblanket=2 (KIT HCPB))

wallpfrealNone

neutron wall load peaking factor (iblanket=2 (KIT HCPB))

whtblbreedrealNone

mass of blanket - breeder part [kg] (iblanket=2 (KIT HCPB))

whtblberealNone

mass of blanket - beryllium part [kg]

iblanket_thicknessintegerNone

Blanket thickness switch (Do not set blnkith, blnkoth, fwith or fwoth when iblanket=3):

  • =1 thin 0.53 m inboard, 0.91 m outboard
  • =2 medium 0.64 m inboard, 1.11 m outboard
  • =3 thick 0.75 m inboard, 1.30 m outboard
primary_pumpingintegerNone

Switch for pumping power for primary coolant (mechanical power only and peak first wall temperature is only calculated if primary_pumping=2):

  • =0 User sets pump power directly (htpmw_blkt, htpmw_fw, htpmw_div, htpmw_shld)
  • =1 User sets pump power as a fraction of thermal power (fpumpblkt, fpumpfw, fpumpdiv, fpumpshld)
  • =2 Mechanical pumping power is calculated
  • =3 Mechanical pumping power is calculated using specified pressure drop
i_shield_matintegerNone

Switch for shield material - currently only applied in costing routines cost_model = 2

  • =0 Tungsten (default)
  • =1 Tungsten carbide
secondary_cycleintegerNone

Switch for power conversion cycle:

  • =0 Set efficiency for chosen blanket, from detailed models (divertor heat not used)
  • =1 Set efficiency for chosen blanket, from detailed models (divertor heat used)
  • =2 user input thermal-electric efficiency (etath)
  • =3 steam Rankine cycle
  • =4 supercritical CO2 cycle
secondary_cycle_liqintegerNone

Switch for power conversion cycle for the liquid breeder component of the blanket:

  • =2 user input thermal-electric efficiency (etath)
  • =4 supercritical CO2 cycle
coolwhintegerNone

Switch for blanket coolant (set via blkttype):

  • =1 helium
  • =2 pressurized water
afwirealNone

inner radius of inboard first wall/blanket coolant channels (stellarator only) [m]

afworealNone

inner radius of outboard first wall/blanket coolant channels (stellarator only) [m]

fwcoolantcharacterNone

switch for first wall coolant (can be different from blanket coolant):

  • 'helium'
  • 'water'
fw_wallrealNone

wall thickness of first wall coolant channels [m]

afwrealNone

radius of first wall cooling channels [m]

pitchrealNone

pitch of first wall cooling channels [m]

fwinletrealNone

inlet temperature of first wall coolant [K]

fwoutletrealNone

outlet temperature of first wall coolant [K]

fwpressurerealNone

first wall coolant pressure [Pa] (secondary_cycle>1)

tpeakrealNone

peak first wall temperature [K]

roughnessrealNone

first wall channel roughness epsilon [m]

fw_channel_lengthrealNone

Length of a single first wall channel (all in parallel) [m] (iteration variable 114, useful for constraint equation 39)

peaking_factorrealNone

peaking factor for first wall heat loads. (Applied separately to inboard and outboard loads. Applies to both neutron and surface loads. Only used to calculate peak temperature - not the coolant flow rate.)

blpressurerealNone

blanket coolant pressure [Pa] (secondary_cycle>1)

inlet_temprealNone

inlet temperature of blanket coolant [K] (secondary_cycle>1)

outlet_temprealNone

Outlet temperature of blanket coolant [K] (secondary_cycle>1)

  • input if coolwh=1 (helium)
  • calculated if coolwh=2 (water)
coolprealNone

blanket coolant pressure [Pa] (stellarator only)

nblktmodpointegerNone

number of outboard blanket modules in poloidal direction (secondary_cycle>1)

nblktmodpiintegerNone

number of inboard blanket modules in poloidal direction (secondary_cycle>1)

nblktmodtointegerNone

number of outboard blanket modules in toroidal direction (secondary_cycle>1)

nblktmodtiintegerNone

number of inboard blanket modules in toroidal direction (secondary_cycle>1)

tfwmatmaxrealNone

maximum temperature of first wall material [K] (secondary_cycle>1)

fw_th_conductivityrealNone

thermal conductivity of first wall material at 293 K (W/m/K) (Temperature dependence is as for unirradiated Eurofer)

fvoldwrealNone

area coverage factor for vacuum vessel volume

fvolsirealNone

area coverage factor for inboard shield volume

fvolsorealNone

area coverage factor for outboard shield volume

fwclfrrealNone

first wall coolant fraction (calculated if lpulse=1 or ipowerflow=1)

praddivrealNone

Radiation power incident on the divertor (MW)

pradfwrealNone

Radiation power incident on the first wall (MW)

pradhcdrealNone

Radiation power incident on the heating and current drive system (MW)

pradlossrealNone

Radiation power lost through holes (eventually hits shield) (MW) Only used for stellarator

ptfnucrealNone

nuclear heating in the TF coil (MW)

ptfnucpm3realNone

nuclear heating in the TF coil (MW/m3) (blktmodel>0)

rdewexrealNone

cryostat radius [m]

zdewexrealNone

cryostat height [m]

rpf2dewarrealNone

radial distance between outer edge of largest (ipfloc=3) PF coil (or stellarator modular coil) and cryostat [m]

vdewexrealNone

cryostat volume [m^3]

vdewinrealNone

vacuum vessel volume [m^3]

vfshldrealNone

coolant void fraction in shield

volblktrealNone

volume of blanket [m^3]

volblktirealNone

volume of inboard blanket [m^3]

volblktorealNone

volume of outboard blanket [m^3]

volshldrealNone

volume of shield [m^3]

whtshldrealNone

mass of shield [kg]

wpenshldrealNone

mass of the penetration shield [kg]

wtshldirealNone

mass of inboard shield [kg]

wtshldorealNone

mass of outboard shield [kg]

irefpropintegerNone

Switch to use REFPROP routines (stellarator only)

fbllirealNone

lithium fraction of blanket by volume (stellarator only)

fblli2orealNone

lithium oxide fraction of blanket by volume (stellarator only)

fbllipbrealNone

lithium lead fraction of blanket by volume (stellarator only)

fblvdrealNone

vanadium fraction of blanket by volume (stellarator only)

wtblli2orealNone

mass of blanket - Li_2O part [kg]

wtbllipbrealNone

mass of blanket - Li-Pb part [kg]

whtblvdrealNone

mass of blanket - vanadium part [kg]

whtbllirealNone

mass of blanket - lithium part [kg]

vfblktrealNone

coolant void fraction in blanket.

blktmodelintegerNone

switch for blanket/tritium breeding model (see iblanket):

  • =0 original simple model
  • =1 KIT model based on a helium-cooled pebble-bed blanket (HCPB) reference design
declblktrealNone

neutron power deposition decay length of blanket structural material [m] (stellarators only)

declfwrealNone

neutron power deposition decay length of first wall structural material [m] (stellarators only)

declshldrealNone

neutron power deposition decay length of shield structural material [m] (stellarators only)

blkttypeintegerNone

Switch for blanket type:

  • =1 WCLL;
  • =2 HCLL; efficiency taken from M. Kovari 2016 "PROCESS": A systems code for fusion power plants - Part 2: Engineering https://www.sciencedirect.com/science/article/pii/S0920379616300072 Feedheat & reheat cycle assumed
  • =3 HCPB; efficiency taken from M. Kovari 2016 "PROCESS": A systems code for fusion power plants - Part 2: Engineering https://www.sciencedirect.com/science/article/pii/S0920379616300072 Feedheat & reheat cycle assumed
etaisorealNone

isentropic efficiency of FW and blanket coolant pumps

etahtprealNone

electrical efficiency of primary coolant pumps


BLANKET REFACTOR For DCLL, but to be used by all mods that share blanket library after testing. Thermodynamic Model for primary_pumping == 2


ipumpintegerNone

Switch for whether the FW and BB are on the same pump system i.e. do they have the same primary coolant or not - =0 FW and BB have the same primary coolant, flow = FWin->FWout->BBin->BBout - =1 FW and BB have the different primary coolant and are on different pump systems

i_bb_liqintegerNone

Switch for Liquid Metal Breeder Material - =0 PbLi - =1 Li

icooldualintegerNone

Switch to specify whether breeding blanket is single-cooled or dual-coolant. - =0 Single coolant used for FW and Blanket (H2O or He). Solid Breeder. - =1 Single coolant used for FW and Blanket (H2O or He). Liquid metal breeder circulted for tritium extraction. - =2 Dual coolant: primary coolant (H2O or He) for FW and blanket structure; secondary coolant is self-cooled liquid metal breeder.

ifciintegerNone

Switch for Flow Channel Insert (FCI) type if liquid metal breeder blanket. - =0 Thin conducting walls, default electrical conductivity (bz_channel_conduct_liq) is Eurofer - =1 Insulating Material, assumed perfect electrical insulator, default density (den_ceramic) is for SiC - =2 Insulating Material, electrical conductivity (bz_channel_conduct_liq) is input (default Eurofer), default density (den_ceramic) is for SiC

imsintegerNone

Switch for Multi Module Segment (MMS) or Single Modle Segment (SMS) - =0 MMS - =1 SMS

n_liq_recircintegerNone

Number of liquid metal breeder recirculations per day, for use with icooldual=1

r_f_liq_ibrealNone

Radial fraction of BZ liquid channels

r_f_liq_obrealNone

Radial fraction of BZ liquid channels

w_f_liq_ibrealNone

Toroidal fraction of BZ liquid channels

w_f_liq_obrealNone

Toroidal fraction of BZ liquid channels

den_ceramicrealNone

FCI material density

th_wall_secondaryrealNone

Liquid metal coolant/breeder wall thickness thin conductor or FCI [m]

bz_channel_conduct_liqrealNone

Liquid metal coolant/breeder thin conductor or FCI wall conductance [A V^-1 m^-1]

a_bz_liqrealNone

Toroidal width of the rectangular cooling channel [m] for long poloidal sections of blanket breeding zone

b_bz_liqrealNone

Radial width of the rectangular cooling channel [m] for long poloidal sections of blanket breeding zone

nopolintegerNone

Number of poloidal sections in a liquid metal breeder/coolant channel for module/segment

nopipesintegerNone

Number of Liquid metal breeder/coolant channels per module/segment

den_liqrealNone

Liquid metal breeder/coolant density [kg m^-3]

wht_liqrealNone

Liquid metal

wht_liq_ibrealNone

Liquid metal

wht_liq_obrealNone

Liquid metal

specific_heat_liqrealNone

Liquid metal breeder/coolant specific heat [J kg^-1 K^-1]

thermal_conductivity_liqrealNone

Liquid metal breeder/coolant thermal conductivity [W m^-1 K^-1]

dynamic_viscosity_liqrealNone

Liquid metal breeder/coolant dynamic viscosity [Pa s]

electrical_conductivity_liqrealNone

Liquid metal breeder/coolant electrical conductivity [Ohm m]

hartmann_liqrealNone

Hartmann number

b_mag_blktrealNone

Toroidal Magnetic feild strength for IB/OB blanket [T]

etaiso_liqrealNone

Isentropic efficiency of blanket liquid breeder/coolant pumps

blpressure_liqrealNone

blanket liquid metal breeder/coolant pressure [Pa]

inlet_temp_liqrealNone

Inlet (scan var 68) and Outlet (scan var 69) temperature of the liquid breeder/coolant [K]

outlet_temp_liqrealNone

Inlet (scan var 68) and Outlet (scan var 69) temperature of the liquid breeder/coolant [K]

rhof_fwrealNone

Density of the FW primary coolant

visc_fwrealNone

Viscosity of the FW primary coolant

rhof_blrealNone

Density of the blanket primary coolant

visc_blrealNone

Viscosity of the blanket primary coolant

cp_fwrealNone

Spesific heat for FW and blanket primary coolant(s)

cv_fwrealNone

Spesific heat for FW and blanket primary coolant(s)

cp_blrealNone

Spesific heat for FW and blanket primary coolant(s)

cv_blrealNone

Spesific heat for FW and blanket primary coolant(s)

f_nuc_pow_bz_structrealNone

For a dual-coolant blanket, fraction of BZ power cooled by primary coolant

f_nuc_pow_bz_liqrealNone

For a dual-coolant blanket, fraction of BZ self-cooled power (secondary coolant)

pnuc_fw_ratio_dcllrealNone

For a dual-coolant blanket, ratio of FW/Blanket nuclear power as fraction of total

pnuc_blkt_ratio_dcllrealNone

For a dual-coolant blanket, ratio of FW/Blanket nuclear power as fraction of total

bzfllengi_n_radintegerNone

Number of radial and poloidal sections that make up the total primary coolant flow length in a blanket module (IB and OB)

bzfllengi_n_polintegerNone

Number of radial and poloidal sections that make up the total primary coolant flow length in a blanket module (IB and OB)

bzfllengo_n_radintegerNone

Number of radial and poloidal sections that make up the total primary coolant flow length in a blanket module (IB and OB)

bzfllengo_n_polintegerNone

Number of radial and poloidal sections that make up the total primary coolant flow length in a blanket module (IB and OB)

bzfllengi_n_rad_liqintegerNone

Number of radial and poloidal sections that make up the total secondary coolant/breeder flow length in a blanket module (IB and OB)

bzfllengi_n_pol_liqintegerNone

Number of radial and poloidal sections that make up the total secondary coolant/breeder flow length in a blanket module (IB and OB)

bzfllengo_n_rad_liqintegerNone

Number of radial and poloidal sections that make up the total secondary coolant/breeder flow length in a blanket module (IB and OB)

bzfllengo_n_pol_liqintegerNone

Number of radial and poloidal sections that make up the total secondary coolant/breeder flow length in a blanket module (IB and OB)

define_iteration_variables

Variable nameTypeInitialDescription
DUMMYrealNone

reinke_variables

Variable nameTypeInitialDescription
impvardivintegerNone

Index of impurity to be iterated for Reinke divertor detachment criterion

lhatrealNone

Connection length factor L|| = lhat qstar R for Reinke criterion, default value from Post et al. 1995 J. Nucl. Mat. 220-2 1014

fzminrealNone

Minimum impurity fraction necessary for detachment. This is the impurity at the SOL/Div.

fzactualrealNone

Actual impurity fraction of divertor impurity (impvardiv) in the SoL (taking impurity_enrichment into account) (iteration variable 148)

reinke_modeintegerNone

Switch for Reinke criterion H/I mode:

  • =0 H-mode
  • =1 I-mode

dcll_module

Variable nameTypeInitialDescription
r_fcirealNone

Radial BZ thickness [m]

r_backwallrealNone

Radial BZ thickness [m]

bz_r_ibrealNone

Structure/coolant compositional fractions

bz_r_obrealNone

Structure/coolant compositional fractions

f_vol_stff_platesrealNone

MF/BSS compositional fractions

f_vol_stl_bz_structrealNone

MF/BSS compositional fractions

f_vol_stl_back_wallrealNone

MF/BSS compositional fractions

f_vol_stl_fwrealNone

MF/BSS compositional fractions

f_vol_mfbss_stlrealNone

Volume of FCIs, other BZ structure, liquid channels, backwall and MF/BSS [m^3]

f_vol_mfbss_herealNone

Volume of FCIs, other BZ structure, liquid channels, backwall and MF/BSS [m^3]

f_vol_mfbss_pblirealNone

Volume of FCIs, other BZ structure, liquid channels, backwall and MF/BSS [m^3]

vol_fcirealNone

BZ masses by composition [kg]

vol_bz_structrealNone

BZ masses by composition [kg]

vol_bz_liqrealNone

BZ masses by composition [kg]

vol_bz_liq_ibrealNone

BZ masses by composition [kg]

vol_bz_liq_obrealNone

BZ masses by composition [kg]

vol_bwrealNone

BZ masses by composition [kg]

vol_bssrealNone

BZ masses by composition [kg]

wht_cerrealNone

Backwall masses by composition [kg]

wht_stl_structrealNone

Backwall masses by composition [kg]

wht_cool_structrealNone

Backwall masses by composition [kg]

wht_bw_stlrealNone

MF/BSS masses by composition [kg]

wht_bw_coolrealNone

MF/BSS masses by composition [kg]

wht_mfbss_stlrealNone

FW masses by composition [kg]

wht_mfbss_coolrealNone

FW masses by composition [kg]

wht_mfbss_pblirealNone

FW masses by composition [kg]

fwmass_stlrealNone

Total masses of material in blanket [kg]

fwmass_coolrealNone

Total masses of material in blanket [kg]

mass_cool_blanketrealNone

Total mass for an inboard/outboard reactor segment [kg]

mass_liq_blanketrealNone

Total mass for an inboard/outboard reactor segment [kg]

mass_stl_blanketrealNone

Total mass for an inboard/outboard reactor segment [kg]

mass_segm_ibrealNone
mass_segm_obrealNone

error_handling

Variable nameTypeInitialDescription
errors_onlogicalNone
ERROR_OKAYinteger0
ERROR_INFOinteger1
ERROR_WARNinteger2
ERROR_SEVEREinteger3
error_idintegerNone

error_id : identifier for final message encountered

error_statusintegerNone

error_status : overall status flag for a run; on exit:

  • 0 all okay
  • 1 informational messages have been encountered
  • 2 warning (non-fatal) messages have been encountered
  • 3 severe (fatal) errors have occurred

INT_DEFAULTinteger-999999
FLT_DEFAULTrealreal(INT_DEFAULT, kind(1.0D0))
idiagsintegerNone
fdiagsrealNone
error_headtypeNone
error_tailtypeNone
error_typetypeNone

maths_library

Variable nameTypeInitialDescription
doubleinteger8

stellarator_variables

Variable nameTypeInitialDescription
istellintegerNone

Switch for stellarator option (set via device.dat):

  • =0 use tokamak model
  • =1 use stellarator model: Helias5
  • =2 use stellarator model: Helias4
  • =3 use stellarator model: Helias3
  • =4 use stellarator model: Wendelstein 7-X with 50 Coils
  • =5 use stellarator model: Wendelstein 7-X with 30 Coils
  • =6 use stellarator model: Use stella_conf.json file (any modulear stellarator, see documentation)
bmnrealNone

relative radial field perturbation

f_asymrealNone

divertor heat load peaking factor

f_radrealNone

radiated power fraction in SOL

f_wrealNone

island size fraction factor

fdivwetrealNone

wetted fraction of the divertor area

flpitchrealNone

field line pitch (rad)

hportamaxrealNone

maximum available area for horizontal ports (m2)

hportpmaxrealNone

maximum available poloidal extent for horizontal ports (m)

hporttmaxrealNone

maximum available toroidal extent for horizontal ports (m)

iotabarrealNone

rotational transform (reciprocal of tokamak q) for stellarator confinement time scaling laws

isthtrintegerNone

Switch for stellarator auxiliary heating method:

  • = 1electron cyclotron resonance heating
  • = 2lower hybrid heating
  • = 3neutral beam injection
m_resintegerNone

poloidal resonance number (1)

max_gyrotron_frequencyrealNone

Maximal available gyrotron frequency (input parameter) (Hz)

n_resintegerNone

toroidal resonance number (1)

shearrealNone

magnetic shear, derivative of iotabar (1)

te0_ecrh_achievablerealNone

maximal central electron temperature as achievable by the ECRH, input. (keV)

vportamaxrealNone

maximum available area for vertical ports (m2)

vportpmaxrealNone

maximum available poloidal extent for vertical ports (m)

vporttmaxrealNone

maximum available toroidal extent for vertical ports (m)

powerht_constraintrealNone
powerscaling_constraintrealNone

stellarator_configuration

Variable nameTypeInitialDescription
stella_config_namecharacterNone
stella_config_symmetryintegerNone
stella_config_coilspermoduleintegerNone
stella_config_rmajor_refrealNone
stella_config_rminor_refrealNone
stella_config_coil_rmajorrealNone
stella_config_coil_rminorrealNone
stella_config_aspect_refrealNone
stella_config_bt_refrealNone
stella_config_WP_arearealNone
stella_config_WP_bmaxrealNone
stella_config_i0realNone
stella_config_a1realNone
stella_config_a2realNone
stella_config_dminrealNone
stella_config_inductancerealNone
stella_config_coilsurfacerealNone
stella_config_coillengthrealNone
stella_config_max_portsize_widthrealNone
stella_config_maximal_coil_heightrealNone
stella_config_min_plasma_coil_distancerealNone
stella_config_derivative_min_LCFS_coils_distrealNone
stella_config_plasma_volumerealNone
stella_config_plasma_surfacerealNone
stella_config_WP_ratiorealNone
stella_config_max_force_densityrealNone
stella_config_max_force_density_MNmrealNone
stella_config_min_bend_radiusrealNone
stella_config_epseffrealNone
stella_config_max_lateral_force_densityrealNone
stella_config_max_radial_force_densityrealNone
stella_config_centering_force_max_MNrealNone
stella_config_centering_force_min_MNrealNone
stella_config_centering_force_avg_MNrealNone
stella_config_neutron_peakfactorrealNone
sc_D11_star_mono_inputrealNone
sc_nu_star_mono_inputrealNone

constants

Variable nameTypeInitialDescription
iottyinteger6

Standard output unit identifier

noutinteger11

Output file unit identifier

nplotinteger12

Plot data file unit identifier

mfileinteger13

Machine-optimised output file unit

vfileinteger14

Verbose diagnostics file

opt_fileinteger15

Optimisation information output file number

sig_fileinteger16

TF inboard stress radial distributions file number

degradreal0.01745329251D0

degrees to radians, = pi/180

echargereal1.60217733D-19

electron charge [C]

emassreal9.10938370D-31

electron mass [kg]

mprotonreal1.6726231D-27

proton mass [kg]

pireal3.1415926535897932D0

pi

rmu0real1.256637062D-6

permeability of free space [H/m]

twopireal6.2831853071795862D0

2 pi

umassreal1.660538921D-27

unified atomic mass unit [kg

epsilon0real8.85418781D-12

permittivity of free space [Farad/m]

cph2oreal4180.0D0

specific heat capacity of water (J/kg/K)

dcopperrealNone

density of copper (kg/m3)

dalurealNone

density of aluminium (kg/m3)

denh2oreal985.0D0

density of water (kg/m3)

k_copperreal330.0D0

Copper thermal conductivity (W/m/K)

kh2oreal0.651D0

thermal conductivity of water (W/m/K)

muh2oreal4.71D-4

water dynamic viscosity (kg/m/s)

n_day_yearreal365.2425D0

Average number of days in a year

current_drive_variables

Variable nameTypeInitialDescription
beamwdrealNone

width of neutral beam duct where it passes between the TF coils (m) T Inoue et al, Design of neutral beam system for ITER-FEAT, Fusion Engineering and Design, Volumes 56-57, October 2001, Pages 517-521)

bigqrealNone

Fusion gain; P_fusion / (P_injection + P_ohmic)

bootipfrealNone

bootstrap current fraction (enforced; see ibss)

bscfmaxrealNone

maximum fraction of plasma current from bootstrap; if bscfmax < 0, bootstrap fraction = abs(bscfmax)

bscf_iter89realNone

bootstrap current fraction, ITER 1989 model

bscf_nevinsrealNone

bootstrap current fraction, Nevins et al model

bscf_sauterrealNone

bootstrap current fraction, Sauter et al model

bscf_wilsonrealNone

bootstrap current fraction, Wilson et al model

bscf_sakairealNone

Bootstrap current fraction, Sakai et al model

cbootrealNone

bootstrap current fraction multiplier (ibss=1)

cnbeamrealNone

neutral beam current (A)

diacf_henderrealNone

diamagnetic current fraction, Hender fit

diacf_scenerealNone

diamagnetic current fraction, SCENE fit

diaipfrealNone

diamagnetic current fraction

echpwrrealNone

ECH power (MW)

echwpowrealNone

ECH wall plug power (MW)

effcdrealNone

current drive efficiency (A/W)

harnumrealNone

cyclotron harmonic frequency number, used in cut-off function

wave_modeintegerNone

Switch for ECRH wave mode :

  • =0 O-mode
  • =1 X-mode
enbeamrealNone

neutral beam energy (keV) (iteration variable 19)

etacdrealNone

auxiliary power wall plug to injector efficiency

etacdfixrealNone

secondary auxiliary power wall plug to injector efficiency

etaechrealNone

ECH wall plug to injector efficiency

etalhrealNone

lower hybrid wall plug to injector efficiency

etanbirealNone

neutral beam wall plug to injector efficiency

fpionrealNone

fraction of beam energy to ions

pnbitotrealNone

neutral beam power entering vacuum vessel

pscf_scenerealNone

Pfirsch-Schlüter current fraction, SCENE fit

nbshinemwrealNone

neutral beam shine-through power

feffcdrealNone

current drive efficiency fudge factor (iteration variable 47)

forbitlossrealNone

fraction of neutral beam power lost after ionisation but before thermalisation (orbit loss fraction)

frbeamrealNone

R_tangential / R_major for neutral beam injection

ftritbmrealNone

fraction of beam that is tritium

gamcdrealNone

normalised current drive efficiency (1.0e20 A/(W m^2))

gamma_ecrhrealNone

User input ECRH gamma (1.0e20 A/(W m^2))

xi_ebwrealNone

User scaling input for EBW plasma heating. Default 0.43

iefrfintegerNone

Switch for current drive efficiency model:

  • =1 Fenstermacher Lower Hybrid
  • =2 Ion Cyclotron current drive
  • =3 Fenstermacher ECH
  • =4 Ehst Lower Hybrid
  • =5 ITER Neutral Beam
  • =6 new Culham Lower Hybrid model
  • =7 new Culham ECCD model
  • =8 new Culham Neutral Beam model
  • =9 RFP option removed in PROCESS (issue #508)
  • =10 ECRH user input gamma
  • =11 ECRH "HARE" model (E. Poli, Physics of Plasmas 2019). Removed in #1811.
  • =12 EBW user scaling input. Scaling (S. Freethy)
iefrffixintegerNone

Switch for 2nd current drive efficiency model:

  • =0 No fixed current drive
  • =1 Fenstermacher Lower Hybrid
  • =2 Ion Cyclotron current drive
  • =3 Fenstermacher ECH
  • =4 Ehst Lower Hybrid
  • =5 ITER Neutral Beam
  • =6 new Culham Lower Hybrid model
  • =7 new Culham ECCD model
  • =8 new Culham Neutral Beam model
  • =9 RFP option removed in PROCESS (issue #508)
  • =10 ECRH user input gamma
  • =11 ECRH "HARE" model (E. Poli, Physics of Plasmas 2019). Removed in #1811.
  • =12 EBW user scaling input. Scaling (S. Freethy)
irfcdintegerNone

Switch for current drive calculation:

  • =0 turned off
  • =1 turned on
nbshinefrealNone

neutral beam shine-through fraction

nbshieldrealNone

neutral beam duct shielding thickness (m)

pheatrealNone

heating power not used for current drive (MW) (iteration variable 11)

pheatfixrealNone

secondary fixed heating power not used for current drive (MW)

pinjalwrealNone

maximum allowable value for injected power (MW) (constraint equation 30)

pinjemwrealNone

auxiliary injected power to electrons (MW)

pinjimwrealNone

auxiliary injected power to ions (MW)

pinjmwrealNone

total auxiliary injected power (MW)

pinjfixmwrealNone

secondary total fixed auxiliary injected power (MW)

plasipfrealNone

plasma driven current fraction (Bootstrap + Diamagnetic + PS)

plhybdrealNone

lower hybrid injection power (MW)

pnbeamrealNone

neutral beam injection power (MW)

porbitlossmwrealNone

neutral beam power lost after ionisation but before thermalisation (orbit loss power) (MW)

psipfrealNone

Pfirsch-Schlüter current fraction

pwplhrealNone

lower hybrid wall plug power (MW)

pwpnbrealNone

neutral beam wall plug power (MW)

rtanbeamrealNone

neutral beam centreline tangency radius (m)

rtanmaxrealNone

maximum tangency radius for centreline of beam (m)

taubeamrealNone

neutral beam e-decay lengths to plasma centre

tbeaminrealNone

permitted neutral beam e-decay lengths to plasma centre

scan_module

Variable nameTypeInitialDescription
ipnscnsinteger1000

Maximum number of scan points

ipnscnvinteger81

Number of available scan variables

noutvarsinteger84
widthinteger110
scan_dimintegerNone

1-D or 2-D scan switch (1=1D, 2=2D)

isweepintegerNone

Number of scan points to calculate

isweep_2integerNone

Number of 2D scan points to calculate

nsweepintegerNone

Switch denoting quantity to scan:

  • 1 aspect
  • 2 hldivlim
  • 3 pnetelin
  • 4 hfact
  • 5 oacdcp
  • 6 walalw
  • 7 beamfus0
  • 8 fqval
  • 9 te
  • 10 boundu(15: fvs)
  • 11 dnbeta
  • 12 bscfmax (use negative values only)
  • 13 boundu(10: hfact)
  • 14 fiooic
  • 15 fjprot
  • 16 rmajor
  • 17 bmxlim
  • 18 gammax
  • 19 boundl(16: ohcth)
  • 20 tbrnmn
  • 21 not used
  • 22 cfactr (N.B. requires iavail=0)
  • 23 boundu(72: fipir)
  • 24 powfmax
  • 25 kappa
  • 26 triang
  • 27 tbrmin (for blktmodel > 0 only)
  • 28 bt
  • 29 coreradius
  • 30 fimpvar # OBSOLETE
  • 31 taulimit
  • 32 epsvmc
  • 33 ttarget
  • 34 qtargettotal
  • 35 lambda_q_omp
  • 36 lambda_target
  • 37 lcon_factor
  • 38 Neon upper limit
  • 39 Argon upper limit
  • 40 Xenon upper limit
  • 41 blnkoth
  • 42 Argon fraction fimp(9)
  • 43 normalised minor radius at which electron cyclotron current drive is maximum
  • 44 Allowable maximum shear stress (Tresca) in tf coil structural material
  • 45 Minimum allowable temperature margin ; tf coils
  • 46 boundu(150) fgwsep
  • 47 impurity_enrichment(9) Argon impurity enrichment
  • 48 TF coil - n_pancake (integer turn winding pack)
  • 49 TF coil - n_layer (integer turn winding pack)
  • 50 Xenon fraction fimp(13)
  • 51 Power fraction to lower DN Divertor ftar
  • 52 SoL radiation fraction
  • 54 GL_nbti upper critical field at 0 Kelvin
  • 55 shldith : Inboard neutron shield thickness
  • 56 crypmw_max: Maximum cryogenic power (ixx=164, ixc=87)
  • 57 bt lower boundary
  • 58 scrapli : Inboard plasma-first wall gap
  • 59 scraplo : Outboard plasma-first wall gap
  • 60 sig_tf_wp_max: Allowable stress in TF Coil conduit (Tresca)
  • 61 copperaoh_m2_max : CS coil current / copper area
  • 62 coheof : CS coil current density at EOF
  • 63 ohcth : CS thickness (m)
  • 64 ohhghf : CS height (m)
  • 65 n_cycle_min : Minimum cycles for CS stress model constraint 90
  • 66 oh_steel_frac: Steel fraction in CS coil
  • 67 t_crack_vertical: Initial crack vertical dimension (m)
  • 68 inlet_temp_liq' : Inlet temperature of blanket liquid metal coolant/breeder (K) <LI> 69outlet_temp_liq' : Outlet temperature of blanket liquid metal coolant/breeder (K)
  • 70 blpressure_liq' : Blanket liquid metal breeder/coolant pressure (Pa) <LI> 71n_liq_recirc' : Selected number of liquid metal breeder recirculations per day
  • 72 bz_channel_conduct_liq' : Conductance of liquid metal breeder duct walls (A V-1 m-1) <LI> 73pnuc_fw_ratio_dcll' : Ratio of FW nuclear power as fraction of total (FW+BB)
  • 74 `f_nuc_pow_bz_struct' : Fraction of BZ power cooled by primary coolant for dual-coolant balnket
  • 75 pitch : pitch of first wall cooling channels (m)
  • 76 etath : Thermal conversion eff.
  • 77 startupratio : Gyrotron redundancy
  • 78 fkind : Multiplier for Nth of a kind costs
  • 79 etaech : ECH wall plug to injector efficiency

  • nsweep_2integerNone

    nsweep_2 /3/ : switch denoting quantity to scan for 2D scan:

    sweeprealNone

    sweep(ipnscns) /../: actual values to use in scan

    sweep_2realNone

    sweep_2(ipnscns) /../: actual values to use in 2D scan

    first_call_1dlogicalNone
    first_call_2dlogicalNone

    constraint_variables

    Variable nameTypeInitialDescription
    auxminrealNone

    minimum auxiliary power (MW) (constraint equation 40)

    betpmxrealNone

    maximum poloidal beta (constraint equation 48)

    bigqminrealNone

    minimum fusion gain Q (constraint equation 28)

    bmxlimrealNone

    maximum peak toroidal field (T) (constraint equation 25)

    fauxmnrealNone

    f-value for minimum auxiliary power (constraint equation 40, iteration variable 64)

    fbetarealNone

    f-value for epsilon beta-poloidal (constraint equation 6, iteration variable 8)

    fbetaprealNone

    f-value for poloidal beta (constraint equation 48, iteration variable 79)

    fbetatryrealNone

    f-value for beta limit (constraint equation 24, iteration variable 36)

    fbetatry_lowerrealNone

    f-value for (lower) beta limit (constraint equation 84, iteration variable 173)

    fcpttfrealNone

    f-value for TF coil current per turn upper limit (constraint equation 77, iteration variable 146)

    fcwrrealNone

    f-value for conducting wall radius / rminor limit (constraint equation 23, iteration variable 104)

    fdenerealNone

    f-value for density limit (constraint equation 5, iteration variable 9) (invalid if ipedestal=3)

    fdivcolrealNone

    f-value for divertor collisionality (constraint equation 22, iteration variable 34)

    fdtmprealNone

    f-value for first wall coolant temperature rise (constraint equation 38, iteration variable 62)

    fecrh_ignitionrealNone

    f-value for ecrh ignition constraint (constraint equation 91, iteration variable 168)

    fflutfrealNone

    f-value for neutron fluence on TF coil (constraint equation 53, iteration variable 92)

    ffuspowrealNone

    f-value for maximum fusion power (constraint equation 9, iteration variable 26)

    fgamcdrealNone

    f-value for current drive gamma (constraint equation 37, iteration variable 40)

    fhldivrealNone

    f-value for divertor heat load (constraint equation 18, iteration variable 27)

    fiooicrealNone

    f-value for TF coil operating current / critical current ratio (constraint equation 33, iteration variable 50)

    fipirrealNone

    f-value for Ip/Irod upper limit constraint equation icc = 46 iteration variable ixc = 72

    fjohcrealNone

    f-value for central solenoid current at end-of-flattop (constraint equation 26, iteration variable 38)

    fjohc0realNone

    f-value for central solenoid current at beginning of pulse (constraint equation 27, iteration variable 39)

    fjprotrealNone

    f-value for TF coil winding pack current density (constraint equation 35, iteration variable 53)

    flhthreshrealNone

    f-value for L-H power threshold (constraint equation 15, iteration variable 103)

    fmvarealNone

    f-value for maximum MVA (constraint equation 19, iteration variable 30)

    fnbshinefrealNone

    f-value for maximum neutral beam shine-through fraction (constraint equation 59, iteration variable 105)

    fncyclerealNone

    f-value for minimum CS coil stress load cycles (constraint equation 90, iteration variable 167)

    fneseprealNone

    f-value for Eich critical separatrix density (constraint equation 76, iteration variable 144)

    foh_stressrealNone

    f-value for Tresca yield criterion in Central Solenoid (constraint equation 72, iteration variable 123)

    fpeakbrealNone

    f-value for maximum toroidal field (constraint equation 25, iteration variable 35)

    fpinjrealNone

    f-value for injection power (constraint equation 30, iteration variable 46)

    fpnetelrealNone

    f-value for net electric power (constraint equation 16, iteration variable 25)

    fportszrealNone

    f-value for neutral beam tangency radius limit (constraint equation 20, iteration variable 33)

    fpsepbqarrealNone

    f-value for maximum Psep*Bt/qAR limit (constraint equation 68, iteration variable 117)

    fpseprrealNone

    f-value for maximum Psep/R limit (constraint equation 56, iteration variable 97)

    fptemprealNone

    f-value for peak centrepost temperature (constraint equation 44, iteration variable 68)

    fptfnucrealNone

    f-value for maximum TF coil nuclear heating (constraint equation 54, iteration variable 95)

    fqrealNone

    f-value for edge safety factor (constraint equation 45, iteration variable 71)

    fqvalrealNone

    f-value for Q (constraint equation 28, iteration variable 45)

    fradpwrrealNone

    f-value for core radiation power limit (constraint equation 17, iteration variable 28)

    fradwallrealNone

    f-value for upper limit on radiation wall load (constr. equ. 67, iteration variable 116)

    freinkerealNone

    f-value for Reinke detachment criterion (constr. equ. 78, iteration variable 147)

    frminorrealNone

    f-value for minor radius limit (constraint equation 21, iteration variable 32)

    fstrcaserealNone

    f-value for maximum TF coil case Tresca yield criterion (constraint equation 31, iteration variable 48)

    fstrcondrealNone

    f-value for maxiumum TF coil conduit Tresca yield criterion (constraint equation 32, iteration variable 49)

    fstr_wprealNone

    f-value for maxiumum TF coil strain absolute value (constraint equation 88, iteration variable 165)

    fmaxvvstressrealNone

    f-value for maximum permitted stress of the VV (constraint equation 65, iteration variable 113)

    ftbrrealNone

    f-value for minimum tritium breeding ratio (constraint equation 52, iteration variable 89)

    ftburnrealNone

    f-value for minimum burn time (constraint equation 13, iteration variable 21)

    ftcyclrealNone

    f-value for cycle time (constraint equation 42, iteration variable 67)

    ftmargohrealNone

    f-value for central solenoid temperature margin (constraint equation 60, iteration variable 106)

    ftmargtfrealNone

    f-value for TF coil temperature margin (constraint equation 36, iteration variable 54)

    ftohsrealNone

    f-value for plasma current ramp-up time (constraint equation 41, iteration variable 66)

    ftpeakrealNone

    f-value for first wall peak temperature (constraint equation 39, iteration variable 63)

    fvdumprealNone

    f-value for dump voltage (constraint equation 34, iteration variable 51)

    fvsrealNone

    f-value for flux-swing (V-s) requirement (STEADY STATE) (constraint equation 12, iteration variable 15)

    fvvherealNone

    f-value for vacuum vessel He concentration limit (iblanket = 2) (constraint equation 55, iteration variable 96)

    fwalldrealNone

    f-value for maximum wall load (constraint equation 8, iteration variable 14)

    fzeffmaxrealNone

    f-value for maximum zeff (constraint equation 64, iteration variable 112)

    gammaxrealNone

    maximum current drive gamma (constraint equation 37)

    maxradwallloadrealNone

    Maximum permitted radiation wall load (MW/m^2) (constraint equation 67)

    mvalimrealNone

    maximum MVA limit (constraint equation 19)

    nbshinefmaxrealNone

    maximum neutral beam shine-through fraction (constraint equation 59)

    nflutfmaxrealNone

    max fast neutron fluence on TF coil (n/m2) (blktmodel>0) (constraint equation 53) Also used for demontable magnets (itart = 1) and superconducting coils (i_tf_sup = 1) To set the CP lifetime (constraint equation 85)

    pdivtlimrealNone

    Minimum pdivt [MW] (constraint equation 80)

    peakfactradrealNone

    peaking factor for radiation wall load (constraint equation 67)

    peakradwallloadrealNone

    Peak radiation wall load (MW/m^2) (constraint equation 67)

    pnetelinrealNone

    required net electric power (MW) (constraint equation 16)

    powfmaxrealNone

    maximum fusion power (MW) (constraint equation 9)

    psepbqarmaxrealNone

    maximum ratio of Psep*Bt/qAR (MWT/m) (constraint equation 68)

    pseprmaxrealNone

    maximum ratio of power crossing the separatrix to plasma major radius (Psep/R) (MW/m) (constraint equation 56)

    ptfnucmaxrealNone

    maximum nuclear heating in TF coil (MW/m3) (constraint equation 54)

    tbrminrealNone

    minimum tritium breeding ratio (constraint equation 52)

    tbrnmnrealNone

    minimum burn time (s) (KE - no longer itv., see issue #706)

    tcycmnrealNone

    minimum cycle time (s) (constraint equation 42)

    tohsmnrealNone

    minimum plasma current ramp-up time (s) (constraint equation 41)

    vvhealwrealNone

    allowed maximum helium concentration in vacuum vessel at end of plant life (appm) (iblanket =2) (constraint equation 55)

    walalwrealNone

    allowable neutron wall-load (MW/m2) (constraint equation 8)

    taulimitrealNone

    Lower limit on taup/taueff the ratio of alpha particle to energy confinement times (constraint equation 62)

    ftaulimitrealNone

    f-value for lower limit on taup/taueff the ratio of alpha particle to energy confinement times (constraint equation 62, iteration variable 110)

    fniterpumprealNone

    f-value for constraint that number of pumps < tfno (constraint equation 63, iteration variable 111)

    zeffmaxrealNone

    maximum value for Zeff (constraint equation 64)

    fpoloidalpowerrealNone

    f-value for constraint on rate of change of energy in poloidal field (constraint equation 66, iteration variable 115)

    fpseprealNone

    f-value to ensure separatrix power is less than value from Kallenbach divertor (Not required as constraint 69 is an equality)

    fcqtrealNone

    TF coil quench temparature remains below tmax_croco (constraint equation 74, iteration variable 141)

    pfcoil_variables

    Variable nameTypeInitialDescription
    ngrpmxinteger10

    maximum number of groups of PF coils

    nclsmxinteger2

    maximum number of PF coils in a given group

    nptsmxinteger32

    maximum number of points across the midplane of the plasma at which the field from the PF coils is fixed

    nfixmxinteger64

    maximum number of fixed current PF coils

    ngcintegerngrpmx*nclsmx

    maximum total number of coils across all groups

    ngc2integerngc+2

    new variable to include 2 additional circuits: plasma and central solenoid

    alfapfrealNone

    smoothing parameter used in PF coil current calculation at the beginning of pulse (BoP)

    alstrohrealNone

    allowable hoop stress in Central Solenoid structural material (Pa)

    i_cs_stressintegerNone

    Switch for CS stress calculation:

    • =0 Hoop stress only
    • =1 Hoop + Axial stress
    areaohrealNone

    Central solenoid vertical cross-sectional area (m2)

    a_oh_turnrealNone

    Central solenoid (OH) trun cross-sectional area (m2)

    awpohrealNone

    central solenoid conductor+void area with area of steel subtracted (m2)

    bmaxohrealNone

    maximum field in central solenoid at end of flat-top (EoF) (T)

    bmaxoh0realNone

    maximum field in central solenoid at beginning of pulse (T)

    bpfrealNone

    peak field at coil i (T)

    ccl0_marealNone

    PF group current array, flux-swing cancellation current (MA) Input if i_pf_current=0, computed otherwise

    ccls_marealNone

    PF group current array, equilibrium current (MA) Input if i_pf_current=0, computed otherwise

    cohboprealNone

    Central solenoid overall current density at beginning of pulse (A/m2)

    coheofrealNone

    Central solenoid overall current density at end of flat-top (A/m2) (iteration variable 37) (sweep variable 62)

    cptrealNone

    current per turn in coil i at time j (A)

    cptdinrealNone

    peak current per turn input for PF coil i (A)

    curpfbrealNone

    PF coil current array, at beginning of pulse (MA) Indexed by coil number, not group number

    curpffrealNone

    PF coil current array, at flat top (MA) Indexed by coil number, not group number

    curpfsrealNone

    PF coil current array, at end of pulse (MA) Indexed by coil number, not group number

    etapsurealNone

    Efficiency of transfer of PF stored energy into or out of storage.

    fcohbofrealNone

    ratio of central solenoid overall current density at beginning of flat-top / end of flat-top

    fcohboprealNone

    ratio of central solenoid overall current density at beginning of pulse / end of flat-top (iteration variable 41)

    fcuohsurealNone

    copper fraction of strand in central solenoid

    fcupfsurealNone

    copper fraction of cable conductor (PF coils)

    fvssurealNone

    F-value for constraint equation 51

    ipflocintegerNone

    Switch for location of PF coil group i:

    • =1 PF coil on top of central solenoid (flux ramp only)
    • =2 PF coil on top of TF coil (flux ramp only)
    • =3 PF coil outside of TF coil (equilibrium coil)
    • =4 PF coil, general location (equilibrium coil)
    ipfresintegerNone

    switch for PF & CS coil conductor type:

    • =0 superconducting PF coils
    • =1 resistive PF coils
    itr_sumrealNone

    total sum of I x turns x radius for all PF coils and CS (Am)

    isumatohintegerNone

    switch for superconductor material in central solenoid:

    • =1 ITER Nb3Sn critical surface model with standard ITER parameters
    • =2 Bi-2212 high temperature superconductor (range of validity T < 20K, adjusted field b < 104 T, B > 6 T)
    • =3 NbTi
    • =4 ITER Nb3Sn model with user-specified parameters
    • =5 WST Nb3Sn parameterisation
    • =6 REBCO HTS tape in CroCo strand
    • =7 Durham Ginzburg-Landau critical surface model for Nb-Ti
    • =8 Durham Ginzburg-Landau critical surface model for REBCO
    • =9 Hazelton experimental data + Zhai conceptual model for REBCO
    isumatpfintegerNone

    switch for superconductor material in PF coils:

    • =1 ITER Nb3Sn critical surface model with standard ITER parameters
    • =2 Bi-2212 high temperature superconductor (range of validity T < 20K, adjusted field b < 104 T, B > 6 T)
    • =3 NbTi
    • =4 ITER Nb3Sn model with user-specified parameters
    • =5 WST Nb3Sn parameterisation
    • =6 REBCO HTS tape in CroCo strand
    • =7 Durham Ginzburg-Landau critical surface model for Nb-Ti
    • =8 Durham Ginzburg-Landau critical surface model for REBCO
    • =9 Hazelton experimental data + Zhai conceptual model for REBCO
    j_crit_str_csrealNone

    superconductor strand critical current density under operating conditions in central solenoid (A/m2). Necessary for the cost calculation in $/kA m

    j_crit_str_pfrealNone

    superconductor strand critical current density under operating conditions in PF coils (A/m2). Necessary for the cost calculation in $/kA m

    i_pf_currentintegerNone

    Switch for controlling the current of the PF coils:

    • =0 Input via the variables curpfb, curpff, curpfs
    • =1 SVD targets zero field across midplane (flux swing coils) and the correct vertical field at the plasma center (equilibrium coils)
    i_sup_pf_shapeintegerNone

    Switch for the placement of Location 3 (outboard) PF coils when the TF coils are superconducting (i_tf_sup = 1)

    • =0 (Default) Outboard PF coils follow TF shape in an ellipsoidal winding surface
    • =1 Outboard PF coils all have same radius, cylindrical winding surface
    jscoh_boprealNone

    central solenoid superconductor critical current density (A/m2) at beginning-of-pulse

    jscoh_eofrealNone

    central solenoid superconductor critical current density (A/m2) at end-of-flattop

    jcableoh_boprealNone

    central solenoid cable critical current density (A/m2) at beginning-of-pulse

    jcableoh_eofrealNone

    central solenoid cable critical current density (A/m2) at end-of-flattop

    ncirtintegerNone

    number of PF circuits (including central solenoid and plasma)

    nclsintegerNone

    number of PF coils in group j

    nfxfhintegerNone

    number of filaments the top and bottom of the central solenoid should be broken into during scaling (5 - 10 is good)

    ngrpintegerNone

    number of groups of PF coils. Symmetric coil pairs should all be in the same group

    nohcintegerNone

    number of PF coils (excluding the central solenoid) + 1

    ohhghfrealNone

    Central solenoid height / TF coil internal height

    oh_steel_fracrealNone

    central solenoid steel fraction (iteration variable 122)

    pf_current_safety_factorrealNone

    Ratio of permissible PF coil conductor current density to critical conductor current density based on short-sample DC measurements

    pfcasethrealNone

    steel case thickness for PF coil i (m)

    pfclresrealNone

    PF coil resistivity (if ipfres=1) (Ohm-m)

    rhopfbusrealNone

    Resistivity of CS and PF coil bus bars (irrespective of whether the coils themselves are superconducting or resistive) (Ohm-m)

    pfmmaxrealNone

    mass of heaviest PF coil (tonnes)

    pfrmaxrealNone

    radius of largest PF coil (m)

    pfwpmwrealNone

    Total mean wall plug power dissipated in PFC and CS power supplies (MW) (issue #713)

    powohresrealNone

    central solenoid resistive power during flattop (W)

    powpfresrealNone

    total PF coil resistive losses during flattop (W)

    rarealNone

    inner radius of coil i (m)

    rbrealNone

    outer radius of coil i (m)

    ricrealNone

    peak current in coil i (MA-turns)

    rjconpfrealNone

    average winding pack current density of PF coil i (A/m2) at time of peak current in that coil (calculated for ipfloc=1 coils)

    rjohcrealNone

    allowable central solenoid current density at end of flat-top (A/m2)

    rjohc0realNone

    allowable central solenoid current density at beginning of pulse (A/m2)

    rjpfalwrealNone

    allowable winding pack current density of PF coil i (A/m2)

    rohcrealNone

    radius to the centre of the central solenoid (m)

    routrrealNone

    radial distance (m) from outboard TF coil leg to centre of ipfloc=3 PF coils

    rpfrealNone

    radius of PF coil i (m)

    rpf1realNone

    offset (m) of radial position of ipfloc=1 PF coils from being directly above the central solenoid

    rpf2realNone

    offset (m) of radial position of ipfloc=2 PF coils from being at rmajor (offset = rpf2triangrminor)

    rrefrealNone

    PF coil radial positioning adjuster:

    • for groups j with ipfloc(j) = 1; rref(j) is ignored
    • for groups j with ipfloc(j) = 2; rref(j) is ignored
    • for groups j with ipfloc(j) = 3; rref(j) is ignored
    • for groups j with ipfloc(j) = 4; rref(j) is radius of the coil in units of minor radii from the major radius (r = rmajor + rref*rminor)
    s_tresca_ohrealNone

    Maximum shear stress (Tresca criterion) coils/central solenoid [MPa]

    sigpfcalwrealNone

    maximum permissible tensile stress (MPa) in steel coil cases for superconducting PF coils (ipfres=0)

    sigpfcfrealNone

    fraction of JxB hoop force supported by steel case for superconducting PF coils (ipfres=0)

    sxlgrealNone

    mutual inductance matrix (H)

    tmargohrealNone

    Central solenoid temperature margin (K)

    turnsrealNone

    number of turns in PF coil i

    vfrealNone

    winding pack void fraction of PF coil i for coolant

    vfohcrealNone

    void fraction of central solenoid conductor for coolant

    vsbnrealNone

    total flux swing available for burn (Wb)

    vsefbnrealNone

    flux swing from PF coils for burn (Wb)

    vsefsurealNone

    flux swing from PF coils for startup (Wb)

    vseftrealNone

    total flux swing from PF coils (Wb)

    vsohrealNone

    total flux swing from the central solenoid (Wb)

    vsohbnrealNone

    central solenoid flux swing for burn (Wb)

    vsohsurealNone

    central solenoid flux swing for startup (Wb)

    vssurealNone

    total flux swing for startup (constraint eqn 51 to enforce vssu=vsres+vsind) (Wb)

    vstotrealNone

    total flux swing for pulse (Wb)

    wavesrealNone

    used in current waveform of PF coils/central solenoid

    whtpfrealNone

    total mass of the PF coil conductor (kg)

    whtpfsrealNone

    total mass of the PF coil structure (kg)

    wtcrealNone

    conductor mass for PF coil i (kg)

    wtsrealNone

    structure mass for PF coil i (kg)

    zhrealNone

    upper point of PF coil i (m)

    zlrealNone

    lower point of PF coil i (m)

    zpfrealNone

    z (height) location of PF coil i (m)

    zrefrealNone

    PF coil vertical positioning adjuster:

    • for groups j with ipfloc(j) = 1; zref(j) is ignored
    • for groups j with ipfloc(j) = 2 AND itart=1 (only); zref(j) is distance of centre of PF coil from inside edge of TF coil (remember that PF coils for STs lie within the TF coil)
    • for groups j with ipfloc(j) = 3; zref(j) = ratio of height of coil group j to plasma minor radius
  • for groups j with ipfloc(j) = 4; zref(j) = ratio of height of coil group j to plasma minor radius
  • bmaxcs_limrealNone

    Central solenoid max field limit [T]

    fbmaxcsrealNone

    F-value for CS mmax field (cons. 79, itvar 149)

    ld_ratio_cstrealNone

    Ratio of CS coil turn conduit length to depth

    l_cond_cstrealNone

    Length of CS of CS coil turn conduit

    d_cond_cstrealNone

    Depth/width of CS of CS coil turn conduit

    r_out_cstrealNone

    Length of CS of CS coil turn conduit length

    r_in_cstrealNone

    Length of CS of CS coil turn conduit length

    heat_transport_variables

    Variable nameTypeInitialDescription
    baseelrealNone

    base plant electric load (W)

    crypmwrealNone

    cryogenic plant power (MW)

    crypmw_maxrealNone

    Maximum cryogenic plant power (MW) Constraint equation icc = 87 Scan variable nwseep = 56

    f_crypmwrealNone

    f-value for maximum cryogenic plant power Iteration variable ixc = 164 Constraint equation icc = 87

    etatfrealNone

    AC to resistive power conversion for TF coils

    etathrealNone

    thermal to electric conversion efficiency if secondary_cycle=2; otherwise calculated.

    etath_liqrealNone
    fachtmwrealNone

    facility heat removal (MW)

    fcshtrealNone

    total baseline power required at all times (MW)

    fgrosboprealNone

    scaled fraction of gross power to balance-of-plant

    fmgdmwrealNone

    power to mgf (motor-generator flywheel) units (MW) (ignored if iscenr=2)

    fpumpblktrealNone

    fraction of total blanket thermal power required to drive the blanket coolant pumps (default assumes water coolant) (secondary_cycle=0)

    fpumpdivrealNone

    fraction of total divertor thermal power required to drive the divertor coolant pumps (default assumes water coolant)

    fpumpfwrealNone

    fraction of total first wall thermal power required to drive the FW coolant pumps (default assumes water coolant) (secondary_cycle=0)

    fpumpshldrealNone

    fraction of total shield thermal power required to drive the shield coolant pumps (default assumes water coolant)

    htpmw_minrealNone

    Minimum total electrical power for primary coolant pumps (MW) (NOT RECOMMENDED)

    helpowrealNone

    Heat removal at cryogenic temperature tmpcry (W)

    helpow_cryalrealNone

    Heat removal at cryogenic temperature tcoolin (W)

    htpmwrealNone

    heat transport system electrical pump power (MW)

    htpmw_blktrealNone

    blanket primary coolant mechanical pumping power (MW)

    htpmw_blkt_liqrealNone

    blanket secondary coolant mechanical pumping power (MW)

    htpmw_blkt_totrealNone

    blanket primary + secondary coolant mechanical pumping power (MW)

    htpmw_divrealNone

    divertor coolant mechanical pumping power (MW)

    htpmw_fwrealNone

    first wall coolant mechanical pumping power (MW)

    htpmw_shldrealNone

    shield and vacuum vessel coolant mechanical pumping power (MW)

    htpsecmwrealNone

    Waste power lost from primary coolant pumps (MW)

    ipowerflowintegerNone

    switch for power flow model:

    • =0 pre-2014 version
    • =1 comprehensive 2014 model
    iprimshldintegerNone

    Switch for shield thermal power destiny:

    • =0 does not contribute to energy generation cycle
    • =1 contributes to energy generation cycle
    nphxintegerNone

    number of primary heat exchangers

    pacpmwrealNone

    total pulsed power system load (MW)

    peakmvarealNone

    peak MVA requirement

    pfwdivrealNone

    heat removal from first wall/divertor (MW)

    pgrossmwrealNone

    gross electric power (MW)

    pinjhtrealNone

    power dissipated in heating and current drive system (MW)

    pinjmaxrealNone

    maximum injector power during pulse (heating and ramp-up/down phase) (MW)

    pinjwprealNone

    injector wall plug power (MW)

    pinjwpfixrealNone

    secondary injector wall plug power (MW)

    pnetelmwrealNone

    net electric power (MW)

    precircmwrealNone

    recirculating electric power (MW)

    priheatrealNone

    total thermal power removed from fusion core (MW)

    psecdivrealNone

    Low-grade heat lost in divertor (MW)

    psechcdrealNone

    Low-grade heat lost into HCD apparatus (MW)

    psechtmwrealNone

    Low-grade heat (MW)

    pseclossmwrealNone

    Low-grade heat (VV + lost)(MW)

    psecshldrealNone

    Low-grade heat deposited in shield (MW)

    pthermmwrealNone

    High-grade heat useful for electric production (MW)

    pwpm2realNone

    base AC power requirement per unit floor area (W/m2)

    tfacpdrealNone

    total steady state TF coil AC power demand (MW)

    tlvpmwrealNone

    estimate of total low voltage power (MW)

    trithtmwrealNone

    power required for tritium processing (MW)

    tturbrealNone

    coolant temperature at turbine inlet (K) (secondary_cycle = 3,4)

    vachtmwrealNone

    vacuum pump power (MW)

    physics_variables

    Variable nameTypeInitialDescription
    ipnlawsinteger50

    number of energy confinement time scaling laws

    abeamrealNone

    beam ion mass (amu)

    afuelrealNone

    average mass of fuel portion of ions (amu)

    aionrealNone

    average mass of all ions (amu)

    alphajrealNone

    current profile index (calculated from q_0 and q if iprofile=1)

    alphanrealNone

    density profile index

    alphaprealNone

    pressure profile index

    alpharaterealNone

    alpha particle production rate (particles/m3/sec)

    alphatrealNone

    temperature profile index

    aspectrealNone

    aspect ratio (iteration variable 1)

    beamfus0realNone

    multiplier for beam-background fusion calculation

    betarealNone

    total plasma beta (iteration variable 5) (calculated if stellarator)

    betaftrealNone

    fast alpha beta component

    betalimrealNone

    allowable beta

    betalim_lowerrealNone

    allowable lower beta

    betanbrealNone

    neutral beam beta component

    betaprealNone

    poloidal beta

    normalised_total_betarealNone

    normaised total beta

    betbm0realNone

    leading coefficient for NB beta fraction

    bprealNone

    poloidal field (T)

    btrealNone

    toroidal field on axis (T) (iteration variable 2)

    btotrealNone

    total toroidal + poloidal field (T)

    burnuprealNone

    fractional plasma burnup

    burnup_inrealNone

    fractional plasma burnup user input

    bvertrealNone

    vertical field at plasma (T)

    c_betarealNone

    Destabalisation parameter for iprofile=6 beta limit

    csawthrealNone

    coeff. for sawteeth effects on burn V-s requirement

    cvolrealNone

    multiplying factor times plasma volume (normally=1)

    cwrmaxrealNone

    maximum ratio of conducting wall distance to plasma minor radius for vertical stability (constraint equation 23)

    denerealNone

    electron density (/m3) (iteration variable 6)

    denirealNone

    fuel ion density (/m3)

    dlameerealNone

    electron-electron coulomb logarithm

    dlamierealNone

    ion-electron coulomb logarithm

    dlimitrealNone

    density limit (/m3) as calculated using various models

    dnalprealNone

    thermal alpha density (/m3)

    dnbeamrealNone

    hot beam ion density, variable (/m3)

    dnbeam2realNone

    hot beam ion density from calculation (/m3)

    dnbetarealNone

    Troyon-like coefficient for beta scaling

    dnelimtrealNone

    density limit (/m3)

    dnitotrealNone

    total ion density (/m3)

    dnlarealNone

    line averaged electron density (/m3)

    dnprotrealNone

    proton ash density (/m3)

    dntaurealNone

    plasma average "n-tau" (seconds/m3)

    dnzrealNone

    high Z ion density (/m3)

    gradient_length_nerealNone

    Max. normalized gradient length in el. density (ipedestal==0 only)

    gradient_length_terealNone

    Max. normalized gradient length in el. temperature (ipedestal==0 only)

    ealphadtreal3520.0D0

    alpha birth energy in D-T reaction (keV)

    epbetmaxrealNone

    maximum (eps*beta_poloidal) (constraint equation 6). Note: revised issue #346 "Operation at the tokamak equilibrium poloidal beta-limit in TFTR", 1992 Nucl. Fusion 32 1468

    epsrealNone

    inverse aspect ratio

    faccdrealNone

    fraction of plasma current produced by auxiliary current drive

    facohrealNone

    fraction of plasma current produced inductively

    falperealNone

    fraction of alpha energy to electrons

    falpharealNone

    fraction of alpha power deposited in plasma (Physics of Energetic Ions, p.2489)

    falpirealNone

    fraction of alpha power to ions

    fdeutrealNone

    deuterium fuel fraction

    ftarrealNone

    fraction of power to the lower divertor in double null configuration (i_single_null = 0 only) (default assumes SN)

    ffwalrealNone

    factor to convert plasma surface area to first wall area in neutron wall load calculation (iwalld=1)

    fgwpedrealNone

    fraction of Greenwald density to set as pedestal-top density. If <0, pedestal-top density set manually using neped (ipedestal==1). (iteration variable 145)

    fgwseprealNone

    fraction of Greenwald density to set as separatrix density. If <0, separatrix density set manually using nesep (ipedestal==1). (iteration variable 152)

    fhe3realNone

    helium-3 fuel fraction

    figmerrealNone

    physics figure of merit (= plascuraspect*sbar, where sbar=1)

    fkzohmrealNone

    Zohm elongation scaling adjustment factor (ishape=2, 3)

    fplhseprealNone

    F-value for Psep >= Plh + Paux (constraint equation 73)

    fpdivlimrealNone

    F-value for minimum pdivt (constraint equation 80)

    fne0realNone

    f-value for the constraint ne(0) > ne(ped) (constraint equation 81) (Iteration variable 154)

    ftritrealNone

    tritium fuel fraction

    fusionraterealNone

    fusion reaction rate (reactions/m3/sec)

    fvsbrnnirealNone

    fraction of the plasma current produced by non-inductive means (iteration variable 44)

    gammarealNone

    Ejima coefficient for resistive startup V-s formula

    gammaftrealNone

    ratio of (fast alpha + neutral beam beta) to thermal beta

    hfacrealNone

    H factors for an ignited plasma for each energy confinement time scaling law

    hfactrealNone

    H factor on energy confinement times, radiation corrected (iteration variable 10).

    taumaxrealNone

    Maximum allowed energy confinement time (s)

    ibssintegerNone

    switch for bootstrap current scaling

    • =1 ITER 1989 bootstrap scaling (high R/a only)
    • =2 for Nevins et al general scaling
    • =3 for Wilson et al numerical scaling
    • =4 for Sauter et al scaling
    • =5 for Sakai et al scaling
    iculblintegerNone

    switch for beta limit scaling (constraint equation 24)

    • =0 apply limit to total beta
    • =1 apply limit to thermal beta
    • =2 apply limit to thermal + neutral beam beta
    • =3 apply limit to toroidal beta
    icurrintegerNone

    switch for plasma current scaling to use

    • =1 Peng analytic fit
    • =2 Peng double null divertor scaling (ST)
    • =3 simple ITER scaling (k = 2.2, d = 0.6)
    • =4 later ITER scaling, a la Uckan
    • =5 Todd empirical scaling I
    • =6 Todd empirical scaling II
    • =7 Connor-Hastie model
    • =8 Sauter scaling allowing negative triangularity
    • =9 FIESTA ST fit
    idiaintegerNone

    switch for diamagnetic current scaling

    • =0 Do not calculate
    • =1 Use original TART scaling
    • =2 Use SCENE scaling
    idenslintegerNone

    switch for density limit to enforce (constraint equation 5)

    • =1 old ASDEX
    • =2 Borrass model for ITER (I)
    • =3 Borrass model for ITER (II)
    • =4 JET edge radiation
    • =5 JET simplified
    • =6 Hugill-Murakami Mq limit
    • =7 Greenwald limit
    idivrtintegerNone

    number of divertors (calculated from i_single_null)

    ifalphapintegerNone

    switch for fast alpha pressure calculation

    • =0 ITER physics rules (Uckan) fit
    • =1 Modified fit (D. Ward) - better at high temperature
    igniteintegerNone

    switch for ignition assumption. Obviously, ignite must be zero if current drive is required. If ignite is 1, any auxiliary power is assumed to be used only during plasma start-up, and is excluded from all steady-state power balance calculations.

    • =0 do not assume plasma ignition
    • =1 assume ignited (but include auxiliary power in costs)</UL
    iinvqdintegerNone

    switch for inverse quadrature in L-mode scaling laws 5 and 9:

    • =0 inverse quadrature not used
    • =1 inverse quadrature with Neo-Alcator tau-E used
    ipedestalintegerNone

    switch for pedestal profiles:

    • =0 use original parabolic profiles
    • =1 use pedestal profile
    ipsintegerNone

    switch for Pfirsch-Schlüter current scaling (issue #413):

    • =0 Do not calculate
    • =1 Use SCENE scaling
    nepedrealNone

    electron density of pedestal [m-3] (`ipedestal==1)

    neseprealNone

    electron density at separatrix [m-3] (`ipedestal==1)

    alpha_critrealNone

    critical ballooning parameter value

    nesep_critrealNone

    critical electron density at separatrix [m-3]

    plasma_res_factorrealNone

    plasma resistivity pre-factor

    rhopednrealNone

    r/a of density pedestal (ipedestal==1)

    rhopedtrealNone

    r/a of temperature pedestal (ipedestal==1)

    rho_te_maxrealNone

    r/a where the temperature gradient is largest (ipedestal==0)

    rho_ne_maxrealNone

    r/a where the density gradient is largest (ipedestal==0)

    tbetarealNone

    temperature profile index beta (`ipedestal==1)

    tepedrealNone

    electron temperature of pedestal (keV) (ipedestal==1)

    teseprealNone

    electron temperature at separatrix (keV) (ipedestal==1) calculated if reinke criterion is used (icc=78)

    iprofileintegerNone

    switch for current profile consistency:

    • =0 use input values for alphaj, rli, dnbeta
    • =1 make these consistent with input q, q_0 values (recommend icurr=4 with this option)
    • =2 use input values for alphaj, rli. Scale dnbeta with aspect ratio (original scaling)
    • =3 use input values for alphaj, rli. Scale dnbeta with aspect ratio (Menard scaling)
    • =4 use input values for alphaj, dnbeta. Set rli from elongation (Menard scaling)
    • =5 use input value for alphaj. Set rli and dnbeta from Menard scaling
    • =6 use input values for alphaj, c_beta. Set rli from Menard and dnbeta from Tholerus
    iradlossintegerNone

    switch for radiation loss term usage in power balance (see User Guide):

    • =0 total power lost is scaling power plus radiation
    • =1 total power lost is scaling power plus core radiation only
    • =2 total power lost is scaling power only, with no additional allowance for radiation. This is not recommended for power plant models.
    iscintegerNone

    switch for energy confinement time scaling law (see description in tauscl)

    tausclcharacter(/'Neo-Alcator      (ohmic)', 'Mirnov               (H)', 'Merezkhin-Muhkovatov (L)', 'Shimomura            (H)', 'Kaye-Goldston        (L)', 'ITER 89-P            (L)', 'ITER 89-O            (L)', 'Rebut-Lallia         (L)', 'Goldston             (L)', 'T10                  (L)', 'JAERI-88             (L)', 'Kaye-Big Complex     (L)', 'ITER H90-P           (H)', 'ITER Mix             (L)', 'Riedel               (L)', 'Christiansen         (L)', 'Lackner-Gottardi     (L)', 'Neo-Kaye             (L)', 'Riedel               (H)', 'ITER H90-P amended   (H)', 'LHD              (stell)', 'Gyro-reduced Bohm(stell)', 'Lackner-Gottardi (stell)', 'ITER-93H             (H)', 'TITAN RFP OBSOLETE      ', 'ITER H-97P ELM-free  (H)', 'ITER H-97P ELMy      (H)', 'ITER-96P             (L)', 'Valovic modified ELMy(H)', 'Kaye PPPL April 98   (L)', 'ITERH-PB98P(y)       (H)', 'IPB98(y)             (H)', 'IPB98(y,1)           (H)', 'IPB98(y,2)           (H)', 'IPB98(y,3)           (H)', 'IPB98(y,4)           (H)', 'ISS95            (stell)', 'ISS04            (stell)', 'DS03                 (H)', 'Murari et al NPL     (H)', 'Petty 2008           (H)', 'Lang et al. 2012     (H)', 'Hubbard 2017 - nom   (I)', 'Hubbard 2017 - lower (I)', 'Hubbard 2017 - upper (I)', 'NSTX (Spherical)     (H)', 'NSTX-Petty08 Hybrid  (H)', 'NSTX gyro-Bohm Buxton(H)', 'Input tauee_in          ', 'ITPA20               (H)'/)

    tauscl(ipnlaws) : labels describing energy confinement scaling laws:

    • ( 1) Neo-Alcator (ohmic)
    • ( 2) Mirnov (H-mode)
    • ( 3) Merezkhin-Muhkovatov (L-mode)
    • ( 4) Shimomura (H-mode)
    • ( 5) Kaye-Goldston (L-mode)
    • ( 6) ITER 89-P (L-mode)
    • ( 7) ITER 89-O (L-mode)
    • ( 8) Rebut-Lallia (L-mode)
    • ( 9) Goldston (L-mode)
    • (10) T10 (L-mode)
    • (11) JAERI-88 (L-mode)
    • (12) Kaye-Big Complex (L-mode)
    • (13) ITER H90-P (H-mode)
    • (14) ITER Mix (L-mode)
    • (15) Riedel (L-mode)
    • (16) Christiansen (L-mode)
    • (17) Lackner-Gottardi (L-mode)
    • (18) Neo-Kaye (L-mode)
    • (19) Riedel (H-mode)
    • (20) ITER H90-P amended (H-mode)
    • (21) LHD (stellarator)
    • (22) Gyro-reduced Bohm (stellarator)
    • (23) Lackner-Gottardi (stellarator)
    • (24) ITER-93H (H-mode)
    • (25) OBSOLETE
    • (26) ITER H-97P ELM-free (H-mode)
    • (27) ITER H-97P ELMy (H-mode)
    • (28) ITER-96P (=ITER-97L) (L-mode)
    • (29) Valovic modified ELMy (H-mode)
    • (30) Kaye PPPL April 98 (L-mode)
    • (31) ITERH-PB98P(y) (H-mode)
    • (32) IPB98(y) (H-mode)
    • (33) IPB98(y,1) (H-mode)
    • (34) IPB98(y,2) (H-mode)
    • (35) IPB98(y,3) (H-mode)
    • (36) IPB98(y,4) (H-mode)
    • (37) ISS95 (stellarator)
    • (38) ISS04 (stellarator)
    • (39) DS03 (H-mode)
    • (40) Murari et al non-power law (H-mode)
    • (41) Petty 2008 (H-mode)
    • (42) Lang et al. 2012 (H-mode)
    • (43) Hubbard 2017 (I-mode) - nominal
    • (44) Hubbard 2017 (I-mode) - lower bound
    • (45) Hubbard 2017 (I-mode) - upper bound
    • (46) NSTX (H-mode; Spherical tokamak)
    • (47) NSTX-Petty08 Hybrid (H-mode)
    • (48) NSTX gyro-Bohm (Buxton) (H-mode; Spherical tokamak)
    • (49) Use input tauee_in

    iscrpintegerNone

    switch for plasma-first wall clearances:

    • =0 use 10% of rminor
    • =1 use input (scrapli and scraplo)
    ishapeintegerNone

    switch for plasma cross-sectional shape calculation:

    • =0 use input kappa, triang to calculate 95% values
    • =1 scale qlim, kappa, triang with aspect ratio (ST)
    • =2 set kappa to the natural elongation value (Zohm ITER scaling), triang input
    • =3 set kappa to the natural elongation value (Zohm ITER scaling), triang95 input
    • =4 use input kappa95, triang95 to calculate separatrix values
    • =5 use input kappa95, triang95 to calculate separatrix values based on MAST scaling (ST)
    • =6 use input kappa, triang to calculate 95% values based on MAST scaling (ST)
    • =7 use input kappa95, triang95 to calculate separatrix values based on fit to FIESTA (ST)
    • =8 use input kappa, triang to calculate 95% values based on fit to FIESTA (ST)
    • =9 set kappa to the natural elongation value, triang input
    • =10 set kappa to maximum stable value at a given aspect ratio (2.6<A<3.6)), triang input (#1399)
    • =11 set kappa Menard 2016 aspect-ratio-dependent scaling, triang input (#1439)
    itartintegerNone

    switch for spherical tokamak (ST) models:

    • =0 use conventional aspect ratio models
    • =1 use spherical tokamak models
    itartpfintegerNone

    switch for Spherical Tokamak PF models:

    • =0 use Peng and Strickler (1986) model
    • =1 use conventional aspect ratio model
    iwalldintegerNone

    switch for neutron wall load calculation:

    • =1 use scaled plasma surface area
    • =2 use first wall area directly
    kapparealNone

    plasma separatrix elongation (calculated if ishape = 1-5, 7 or 9-10)

    kappa95realNone

    plasma elongation at 95% surface (calculated if ishape = 0-3, 6, or 8-10)

    kappaarealNone

    plasma elongation calculated as xarea/(pi.a^2)

    kappaa_IPBrealNone

    Volume measure of plasma elongation

    ne0realNone

    central electron density (/m3)

    ni0realNone

    central ion density (/m3)

    m_s_limitrealNone

    margin to vertical stability

    p0realNone

    central total plasma pressure (Pa)

    palppvrealNone

    alpha power per volume (MW/m3)

    palpepvrealNone

    alpha power per volume to electrons (MW/m3)

    palpfwmwrealNone

    alpha power escaping plasma and reaching first wall (MW)

    palpipvrealNone

    alpha power per volume to ions (MW/m3)

    palpmwrealNone

    alpha power (MW)

    palpnbrealNone

    alpha power from hot neutral beam ions (MW)

    pchargemwrealNone

    non-alpha charged particle fusion power (MW)

    pchargepvrealNone

    non-alpha charged particle fusion power per volume (MW/m3)

    pcoefrealNone

    profile factor (= n-weighted T / average T)

    pinnerzoneradmwrealNone

    radiation power from inner zone (MW)

    pcoreradpvrealNone

    total core radiation power per volume (MW/m3)

    pddrealNone

    deuterium-deuterium fusion power (MW)

    pdhe3realNone

    deuterium-helium3 fusion power (MW)

    pdivtrealNone

    power to conducted to the divertor region (MW)

    pdivlrealNone

    power conducted to the lower divertor region (calculated if i_single_null = 0) (MW)

    pdivurealNone

    power conducted to the upper divertor region (calculated if i_single_null = 0) (MW)

    pdivmaxrealNone

    power conducted to the divertor with most load (calculated if i_single_null = 0) (MW)

    pdtrealNone

    deuterium-tritium fusion power (MW)

    pouterzoneradmwrealNone

    radiation power from outer zone (MW)

    pedgeradpvrealNone

    edge radiation power per volume (MW/m3)

    pfuscmwrealNone

    charged particle fusion power (MW)

    phiintrealNone

    internal plasma V-s

    photon_wallrealNone

    Nominal mean radiation load on inside surface of reactor (MW/m2)

    piepvrealNone

    ion/electron equilibration power per volume (MW/m3)

    plascurrealNone

    plasma current (A)

    pneutmwrealNone

    neutron fusion power (MW)

    pneutpvrealNone

    neutron fusion power per volume (MW/m3)

    pohmmwrealNone

    ohmic heating power (MW)

    pohmpvrealNone

    ohmic heating power per volume (MW/m3)

    powerhtrealNone

    heating power (= transport loss power) (MW) used in confinement time calculation

    powfmwrealNone

    fusion power (MW)

    pperimrealNone

    plasma poloidal perimeter (m)

    pradmwrealNone

    total radiation power from inside LCFS (MW)

    pradpvrealNone

    total radiation power per volume (MW/m3)

    pradsolmwrealNone

    radiation power from SoL (MW)

    protonraterealNone

    proton production rate (particles/m3/sec)

    psolradmwrealNone

    SOL radiation power (MW) (stellarator only)

    psyncpvrealNone

    synchrotron radiation power per volume (MW/m3)

    ilhthreshintegerNone

    switch for L-H mode power threshold scaling to use (see pthrmw for list)

    plhthreshrealNone

    L-H mode power threshold (MW) (chosen via ilhthresh, and enforced if constraint equation 15 is on)

    pthrmwrealNone

    L-H power threshold for various scalings (MW)

    • =1 ITER 1996 scaling: nominal
    • =2 ITER 1996 scaling: upper bound
    • =3 ITER 1996 scaling: lower bound
    • =4 ITER 1997 scaling: excluding elongation
    • =5 ITER 1997 scaling: including elongation
    • =6 Martin 2008 scaling: nominal
    • =7 Martin 2008 scaling: 95% upper bound
    • =8 Martin 2008 scaling: 95% lower bound
    • =9 Snipes 2000 scaling: nominal
    • =10 Snipes 2000 scaling: upper bound
    • =11 Snipes 2000 scaling: lower bound
    • =12 Snipes 2000 scaling (closed divertor): nominal
    • =13 Snipes 2000 scaling (closed divertor): upper bound
    • =14 Snipes 2000 scaling (closed divertor): lower bound
    • =15 Hubbard et al. 2012 L-I threshold scaling: nominal
    • =16 Hubbard et al. 2012 L-I threshold scaling: lower bound
    • =17 Hubbard et al. 2012 L-I threshold scaling: upper bound
    • =18 Hubbard et al. 2017 L-I threshold scaling
    • =19 Martin 2008 aspect ratio corrected scaling: nominal
    • =20 Martin 2008 aspect ratio corrected scaling: 95% upper bound
    • =21 Martin 2008 aspect ratio corrected scaling: 95% lower bound
    ptremwrealNone

    electron transport power (MW)

    ptrepvrealNone

    electron transport power per volume (MW/m3)

    ptrimwrealNone

    ion transport power (MW)

    pscalingmwrealNone

    Total transport power from scaling law (MW)

    ptripvrealNone

    ion transport power per volume (MW/m3)

    qrealNone

    Safety factor 'near' plasma edge (iteration variable 18) equal to q95 (unless icurr=2 (ST current scaling), in which case q = mean edge safety factor qbar)

    q0realNone

    safety factor on axis

    q95realNone

    safety factor at 95% surface

    qfuelrealNone

    plasma fuelling rate (nucleus-pairs/s)

    tauratiorealNone

    tauratio /1.0/ : ratio of He and pellet particle confinement times

    qlimrealNone

    lower limit for edge safety factor

    qstarrealNone

    cylindrical safety factor

    rad_fraction_solrealNone

    SoL radiation fraction

    rad_fraction_totalrealNone

    Radiation fraction total = SoL + LCFS radiation / total power deposited in plasma

    ralpnerealNone

    thermal alpha density/electron density (iteration variable 109)

    protiumrealNone

    Seeded protium density / electron density.

    rlirealNone

    plasma normalised internal inductance (calculated from alphaj if iprofile=1)

    rlprealNone

    plasma inductance (H)

    rmajorrealNone

    plasma major radius (m) (iteration variable 3)

    rminorrealNone

    plasma minor radius (m)

    rnbeamrealNone

    hot beam density / n_e (iteration variable 7)

    rncnerealNone

    n_carbon / n_e

    rndfuelrealNone

    fuel burnup rate (reactions/second)

    rnfenerealNone

    n_highZ / n_e

    rnonerealNone

    n_oxygen / n_e

    rpfacrealNone

    neo-classical correction factor to rplas

    rplasrealNone

    plasma resistance (ohm)

    res_timerealNone

    plasma current resistive diffusion time (s)

    sarearealNone

    plasma surface area

    sareaorealNone

    outboard plasma surface area

    sfrealNone

    shape factor = plasma poloidal perimeter / (2.pi.rminor)

    i_single_nullintegerNone

    switch for single null / double null plasma:

    • =0 for double null
    • =1 for single null (diverted side down)
    ssyncrealNone

    synchrotron wall reflectivity factor

    taueerealNone

    electron energy confinement time (sec)

    tauee_inrealNone

    Input electron energy confinement time (sec) (isc=48 only)

    taueffrealNone

    global thermal energy confinement time (sec)

    taueirealNone

    ion energy confinement time (sec)

    tauprealNone

    alpha particle confinement time (sec)

    terealNone

    volume averaged electron temperature (keV) (iteration variable 4)

    te0realNone

    central electron temperature (keV)

    tenrealNone

    density weighted average electron temperature (keV)

    tirealNone

    volume averaged ion temperature (keV). N.B. calculated from te if tratio > 0.0

    ti0realNone

    central ion temperature (keV)

    tinrealNone

    density weighted average ion temperature (keV)

    tratiorealNone

    ion temperature / electron temperature(used to calculate ti if tratio > 0.0

    triangrealNone

    plasma separatrix triangularity (calculated if ishape = 1, 3-5 or 7)

    triang95realNone

    plasma triangularity at 95% surface (calculated if ishape = 0-2, 6, 8 or 9)

    volrealNone

    plasma volume (m3)

    vsbrnrealNone

    V-s needed during flat-top (heat + burn times) (Wb)

    vshiftrealNone

    plasma/device midplane vertical shift - single null

    vsindrealNone

    internal and external plasma inductance V-s (Wb)

    vsresrealNone

    resistive losses in startup V-s (Wb)

    vssttrealNone

    total V-s needed (Wb)

    wallmwrealNone

    average neutron wall load (MW/m2)

    wtgpdrealNone

    mass of fuel used per day (g)

    xarearealNone

    plasma cross-sectional area (m2)

    zeffrealNone

    plasma effective charge

    zeffairealNone

    mass weighted plasma effective charge

    structure_variables

    Variable nameTypeInitialDescription
    aintmassrealNone

    intercoil structure mass (kg)

    clgsmassrealNone

    gravity support structure for TF coil, PF coil and intercoil support systems (kg)

    coldmassrealNone

    total mass of components at cryogenic temperatures (kg)

    fncmassrealNone

    PF coil outer support fence mass (kg)

    gsmassrealNone

    reactor core gravity support mass (kg)

    times_variables

    Variable nameTypeInitialDescription
    pulsetimingsrealNone

    Switch for pulse timings (if lpulse=1):

    • =0, tohs = Ip(MA)/0.1 tramp, tqnch = input
    • =1, tohs = iteration var or input. tramp/tqnch max of input or tohs
    tburnrealNone

    burn time (s) (calculated if lpulse=1)

    tburn0realNone

    burn time (s) - used for internal consistency

    tcyclerealNone

    full cycle time (s)

    tdownrealNone

    down time (s)

    tdwellrealNone

    time between pulses in a pulsed reactor (s) (iteration variable 17)

    t_fusion_ramprealNone

    heating time, after current ramp up (s)

    timrealNone

    array of time points during plasma pulse (s)

    timelabelcharacterNone

    array of time labels during plasma pulse (s)

    intervallabelcharacterNone

    time intervals - as strings (s)

    tohsrealNone

    plasma current ramp-up time for current initiation (s) (calculated if lpulse=0) (iteration variable 65)

    tohsinrealNone

    Switch for plasma current ramp-up time (if lpulse=0):

    • = 0, tohs = tramp = tqnch = Ip(MA)/0.5
    • <>0, tohs = tohsin; tramp, tqnch are input
    tpulserealNone

    pulse length = tohs + t_fusion_ramp + tburn + tqnch

    tqnchrealNone

    shut down time for PF coils (s); if pulsed, = tohs

    tramprealNone

    initial PF coil charge time (s); if pulsed, = tohs

    const_and_precisions

    Variable nameTypeInitialDescription
    sp_integer4
    dp_integer8
    wp_integerdp_
    odep_integerdp_
    ypi_integer4
    ypd_integer8
    lfn_integer256
    zeroreal0.0_wp_
    unitreal1.0_wp_
    pireal3.141592653589793_wp_
    sqrt_pireal1.772453850905516_wp_
    sqrt_2real1.414213562373095_wp_
    radrealpi/180.0_wp_
    exreal(/unit, zero, zero/)
    eyreal(/zero, unit, zero/)
    ezreal(/zero, zero, unit/)
    kronrealreshape((/unit, zero, zero, zero, unit, zero, zero, zero, unit/), (/3, 3/))
    imcomplex(0.0_wp_, 1.0_wp_)
    czerocomplex(0.0_wp_, 0.0_wp_)
    cunitcomplex(1.0_wp_, 0.0_wp_)
    ctwocomplex(2.0_wp_, 0.0_wp_)
    comp_epsrealEPSILON(unit)
    comp_eps2realcomp_eps**2
    comp_tinyrealTINY(unit)
    comp_hugerealHUGE(unit)
    comp_tinylogreal-200
    comp_hugelogreal+200
    output_tinyreal1.0d-66
    output_hugereal1.0d+66
    e_real1.601917d-19
    me_real9.109558d-31
    mp_real1.672614d-27
    rmpe_realmp_/me_
    c_real2.997925d+08
    eps0_real8.854188d-12
    keV_real1000*e_
    mc2_SIrealme_*c_**2
    mc2_realmc2_SI/keV_
    mc_realme_*c_
    wce1_reale_/me_
    fce1_realwce1_/(2*pi)
    wpe1_real56.4049201
    fpe1_realwpe1_/(2*pi)
    wpe12_realwpe1_**2
    vte1_real1.8755328e7
    curr1_reale_*vte1_
    umax_real7.0d0
    nu_integer700
    Npar_minreal1.0d-2